photobleaching.7 Because of these reasons, in recent years
there has been increased interest in the derivatization of the
BODIPY dyes for various applications.8-10 Recent works
by various research groups have demonstrated that aza-
BODIPY dyes can generate singlet oxygen and thus act as
efficient photodynamic therapeutic agents.11 However, the
triplet quantum yields and the singlet oxygen generation
efficiency of those dyes were found to be relatively low.
Herein, we report the synthesis and photophysical charac-
terization of novel boron complexes of aza-dipyrromethenes
(aza-BODIPYs) substituted with heavier halogen atoms such
as bromine and iodine. By heavy atom substitution, we have
been able to obtain a triplet quantum yield of 0.78 and singlet
oxygen generation efficiencies as high as 70%. As far as we
know these values are the highest reported so far for aza-
BODIPY derivatives.
Scheme 1. Synthesis of Aza-BODIPY Derivatives
Scheme 1 summarizes the synthetic strategy adopted for
the synthesis of various aza-BODIPY derivatives 4a-b and
5b. The compounds 4a-b were synthesized in a facile three-
step route starting from the chalcones 1a-b. Addition of
nitromethane to the chalcone in the presence of diethylamine
gave the addition products 2a-b in ca. 75-80% yields.
Subsequently, the condensation products 3a-b were gener-
ated by refluxing 2a-b with ammonium acetate in ethanol
for 48 h. The product precipitated during the course of the
reaction was filtered and recrystallized to yield 3a-b
(40-50%) with a violet metallic luster. The azadipyr-
romethenes 3a-b were subsequently converted to the
targeted aza-BODIPY derivatives 4a-b by modifying the
reported procedure.6d This was achieved by refluxing 3a-b
with boron trifluoride diethyl etherate and triethyl amine in
toluene for 5 h to give 4a-b in quantitative yields (75-80%)
after purification through column chromatography.
With the goal of improving the intersystem crossing
efficiency and hence the singlet oxygen generation by the
aza-BODIPY derivatives, we introduced heavy atoms such
as iodine in the pyrrole ring. This was achieved by reacting
4b with 4.5 equiv of N-iodosuccinimide in a 3:1 mixture of
chloroform/acetic acid at 25 °C for 10 h. The reaction
mixture after evaporation of the solvent was subjected to
column chromatography to yield the iodo substituted aza-
BODIPY derivative 5b in 65% yield. All these derivatives
were characterized by various spectral and analytical tech-
niques (Figures S1-S5, Supporting Information).
(5) (a) Ramaiah, D.; Joy, A.; Chandrasekhar, N.; Eldho, N. V.; Das, S.;
George, M. V. Photochem. Photobiol. 1997, 65, 783–790. (b) Jyothish, K.;
Avirah, R. R.; Ramaiah, D. Org. Lett. 2006, 8, 111–114. (c) Jyothish, K.;
Arun, K. T.; Ramaiah, D. Org. Lett. 2004, 6, 3965–3968. (d) Jisha, V. S.;
Arun, K. T.; Hariharan, M.; Ramaiah, D. J. Am. Chem. Soc. 2006, 128,
6024–6025. (e) Salice, P.; Arnbjerg, J.; Pedersen, B. W.; Toftegaard, R.;
Beverina, L.; Pagani, G. A.; Ogilby, P. R. J. Phys. Chem. A 2010, 114,
2518–2525. (f) Ramaiah, D.; Eckert, I.; Arun, K. T.; Weidenfeller, L.; Epe,
B. Photochem. Photobiol. 2004, 79, 99–104. (g) Arun, K. T.; Epe, B.;
Ramaiah, D. J. Phys. Chem. B 2002, 106, 11622–11627. (h) Arun, K. T.;
Ramaiah, D. J. Phys. Chem. A 2005, 109, 5571–5578.
(6) (a) Ozlem, S.; Akkaya, E. U. J. Am. Chem. Soc. 2009, 131, 48–49.
(b) Yogo, T.; Urano, Y.; Ishitsuka, Y.; Maniwa, F.; Nagano, T. J. Am. Chem.
Soc. 2005, 127, 12162–12163. (c) Gorman, A.; Killoran, J.; O’Shea, C.;
Kenna, T.; Gallagher, W. M.; O’Shea, D. F. J. Am. Chem. Soc. 2004, 126,
10619–10631. (d) McDonnell, S. O.; Hall, M. J.; Allen, L. T.; Byrne, A.;
Gallagher, W. M.; O’Shea, D. F. J. Am. Chem. Soc. 2005, 127, 16360–
16361.
(7) Loudet, A.; Burgess, K. Chem. ReV. 2007, 107, 4891–4932, and
references therein.
Aza-dipyrromethenes 3a-b are characterized by their
intense absorption in the near-infrared region of the visible
spectrum. The free ligands 3a-b showed a distinct absorp-
tion band in the 610-620 nm region with molar extinction
coefficients in the range (3-7) × 104 M-1 cm-1 (Figure S6,
Supporting Information). The incorporation of Lewis acid
(8) (a) Baruah, M.; Qin, W. W.; Vallee, R. A. L.; Beljonne, D.; Rohand,
T.; Dehaen, W.; Boens, N. Org. Lett. 2005, 7, 4377–4380. (b) Haefele, A.;
Zedde, C.; Retailleau, P.; Ulrich, G.; Ziessel, R. Org. Lett. 2010, 12, 1672–
1675. (c) Catmak, Y.; Akkaya, E. U. Org. Lett. 2009, 11, 85–88. (d)
Descalzo, A. B.; Xu, H.-J.; Xue, Z.-L.; Hoffmann, K.; Shen, Z.; Weller,
M. G.; You, X.-Z.; Rurack, K. Org. Lett. 2008, 10, 1581–1584
.
(9) (a) Diring, S.; Puntoriero, F.; Nastasi, F.; Champagna, S.; Zeissel,
R. J. Am. Chem. Soc. 2009, 131, 6108–6109. (b) Kim, C. K.; Ghosh, P.;
Pagliuca, C.; Zhu, Z.-J.; Menichetti, S.; Rotello, V. M. J. Am. Chem. Soc.
2009, 131, 1360–1361. (c) Bergstrom, F.; Mikhalyov, I.; Hagglof, P.;
Wortmann, R.; Ny, T.; Johansson, L. B.-A. J. Am. Chem. Soc. 2002, 124,
+
BF2 to the ligand caused a bathochromic shift in the
absorption spectra of the aza-BODIPY derivatives 4a-b by
50-60 nm (Figure 1A). The absorption spectrum of the
compound 5b with iodo-substitution at the peripheral phenyl
rings as well as at the core showed a maximum at 666 nm.
Figure 1B shows the fluorescence spectra of 4b and 5b in
DMSO. The azadipyrromethene 3b has an emission maxi-
mum at 655 nm (Figure S7, Supporting Information), while
the aza-BODIPYs 4a-b and 5b exhibited emission in the
690-710 nm region with Stoke shifts in the range 30-40
196–204
.
(10) (a) Atilgan, S.; Ozdemir, T.; Akkaya, E. U. Org. Lett. 2008, 10,
4065–4067. (b) Guliyev, R.; Coskun, A.; Akkaya, E. U. J. Am. Chem. Soc.
2009, 131, 9007–9013. (c) Bonardi, L.; Kanaan, H.; Camerel, F.; Jolinat,
P.; Retailleau, P.; Ziessel, R. AdV. Funct. Mater. 2008, 18, 401–413
.
(11) (a) Gallagher, W. M.; Allen, L. T.; O’Shea, C.; Kenna, T.; Hall,
M. J.; Killoran, J.; O’Shea, D. F. Br. J. Cancer 2005, 92, 1702–1710. (b)
Byrne, A. T.; O’Connor, A. E.; Hall, M.; Murtagh, J.; O’Neill, K.; Curran,
K. M.; Mongrain, K.; Rousseau, J. A.; Lecomte, R.; McGee, S.; Callanan,
J. J.; O’Shea, D. F.; Gallagher, W. M. Br. J. Cancer 2009, 101, 1565–
1573.
Org. Lett., Vol. 12, No. 24, 2010
5721