M. Frohn et al. / Bioorg. Med. Chem. Lett. 22 (2012) 628–633
633
9. Gergely, P.; Wallström, E.; Nuesslein-Hildesheim, B.; Bruns, C.; Zécri, F.; Cooke,
N.; Traebert, M.; Tuntland, T.; Rosenberg, M.; Saltzman, M. Mult. Scler. 2009, 15,
S125.
containing 0.2% diethylamine, 70 mL/min flow rate. (+)-9e: Rt = 3.10 min,
½
a 2D5
ꢂ
= +19.4°, (c 0.12, MeOH); (ꢀ)-9e: Rt = 3.65 min, ½a D25
= ꢀ16.8°, (c 0.18,
ꢂ
MeOH).
10. For recent work in this area see: (a) Bolli, M. H.; Lescop, C.; Naylor, O. Curr. Top.
Med. Chem. 2011, 11, 726; (b) Demont, E. H.; Arpino, S.; Bit, R. A.; Campbell, C.
A.; Deeks, N.; Desai, S.; Dowell, S. J.; Gaskin, P.; Gray, J. R. J.; Harrison, L. A.;
Haynes, A.; Heightman, T. D.; Holmes, D. S.; Humphreys, P. G.; Kumar, U.;
Morse, M. A.; Osborne, G. J.; Panchal, T.; Philpott, K. L.; Taylor, S.; Watson, R.;
Willis, R.; Witherington, J. J. Med. Chem. 2011, 54, 6724; (c) Pennington, L. D.;
Sham, K. K. C.; Pickrell, A. J.; Harrington, P. E.; Frohn, M. J.; Lanman, B. A.; Reed,
A. B.; Croghan, M. D.; Lee, M. R.; Xu, H.; McElvain, M.; Xu, Y.; Zhang, X.; Fiorino,
M.; Horner, M.; Morrison, H. G.; Arnett, H. A.; Fotsch, C.; Wong, M.; Cee, V. J.
ACS Med. Chem. Lett. 2011, 2, 752; (d) Nishi, T.; Miyazaki, S.; Takemoto, T.;
Suzuki, K.; Iio, Y.; Nakajima, K.; Ohnuki, T.; Kawase, Y.; Nara, F.; Inaba, S.; Izumi,
T.; Yuita, H.; Oshima, K.; Doi, H.; Inoue, R.; Tomisato, W.; Kagari, T.; Shimozato,
T. ACS Med. Chem. Lett. 2011, 2, 368; (e) Lanman, B. A.; Cee, V. J.; Cheruku, S. R.;
Frohn, M.; Golden, J.; Lin, J.; Lobera, M.; Marantz, Y.; Muller, K. M.; Neira, S. C.;
Pickrell, A. J.; Rivenzon-Segal, D.; Schutz, N.; Sharadendu, A.; Yu, X.; Zhang, Z.;
Buys, J.; Fiorino, M.; Gore, A.; Horner, M.; Itano, A.; McElvain, M.; Middleton, S.;
Schrag, M.; Vargas, H. M.; Xu, H.; Xu, Y.; Zhang, X.; Siu, J.; Bürli, R. ACS Med.
Chem. Lett. 2011, 2, 102; (f) Cee, V. J.; Frohn, M.; Lanman, B. A.; Golden, J.;
Muller, K.; Neira, S.; Pickrell, A.; Arnett, H.; Buys, J.; Gore, A.; Fiorino, M.;
Horner, M.; Itano, A.; Lee, M. R.; McElvain, M.; Middleton, S.; Schrag, M.;
Rivenzon-Segal, D.; Vargas, H. M.; Xu, H.; Xu, Y.; Zhang, X.; Siu, J.; Wong, M.;
Bürli, R. ACS Med. Chem. Lett. 2011, 2, 107.
16. Substituted thiazolidines required for 11e–h were synthesized using a
literature procedure: Lalezari, I.; Schwartz, E. L. J. Med. Chem. 1988, 31, 1427.
17. Please refer to the Supplementary data for the synthesis and chiral separation
of (+)-11f and (ꢀ)-11f. Separation conditions: chiralcel OJ-H column
(250 ꢁ 21 mm), mobile phase: 40% IPA containing 0.2% diethylamine, 65 mL/
min flow rate.
18. The hS1P1 receptor internalization assay was performed using a U2OS cell line
expressing hS1P1–eGFP chimeric protein (Thermo Scientific, Søborg,
Denmark). Upon compound treatment, the hS1P1 receptor was internalized
into the cytoplasm, forming GFP-containing-endosomes. This event was
detected using an ArrayScan automated microscope (Thermo Scientific
Cellomics, Pittsburg, PA), and the degree of receptor internalization was
quantitated by counting the number of GFP-containing endosomes per cell.
hS1P1–eGFP expressing U2OS cells were starved in serum free media for two
hours prior to compound treatment. Compounds were incubated with the
starved cells at 37 °C for one hour. Compound-treated cells were subsequently
fixed using 4% formaldehyde, and nuclei were stained using Hoechst dye
(Invitrogen/Molecular Probes, Cat. #H3570). The cells were then imaged by
ArrayScan, and the potency and efficacy of the compounds were determined by
plotting the number of GFP-containing endosomes per cell against
corresponding compound concentration.
19. The measured solubility in 0.1 N HCl, PBS buffer, and simulated intestinal fluid
was >200 ng/mL Tan, H.; Semin, D.; Wacker, M.; Cheetham, J. J. Assoc. Lab
Autom. 2005, 364.
20. Female Lewis rats (250 g, 6–8 wks) were received from Charles River
Laboratories (Wilmington, MA) and allowed to acclimatize for at least one
week before being placed on study. Rats (N = 5/group) were administered
vehicle (20% captisol in water), (+)-11f or (ꢀ)-11f (10 mg/kg in 20% captisol/
water) by oral gavage (10 mL/kg). 4 h Post-dose, animals were sacrificed by
CO2 inhalation, and blood was collected by cardiac puncture. Approximately
1 mL of blood was transferred to a MicrotainerÒ hematology tube containing
11. A study of 245 compounds that progressed through rat or dog tolerability
studies suggested a higher likelihood of attrition, due to an unfavourable safety
profile, for compounds with relatively low tPSA (<75 Å2) and high lipophilicity
(clogP >3) Hughes, J. D.; Blagg, J.; Price, D. A.; Bailey, S.; DeCrescenzo, G. A.;
Devraj, R. V.; Ellsworth, E.; Fobian, Y. M.; Gibbs, M. E.; Gilles, R. W.; Greene, N.;
Huang, E.; Krieger-Burke, T.; Loesel, J.; Wager, T.; Whiteley, L.; Zhang, Y. Bioorg.
Med. Chem. Lett. 2008, 18, 4872.
12. Yoshino, K.; Hori, N.; Hori, M.; Morita, T.; Tsukamoto, G. J. Heterocycl. Chem.
1989, 1039.
13. Niwa, T.; Yorimitsu, H.; Oshima, K. Angew. Chem., Int. Ed. 2007, 46, 2643.
14. Martinelli, J. R.; Watson, D. A.; Freckmann, D. M. M.; Barder, T. E.; Buchwald, S.
L. J. Org. Chem. 2008, 73, 7102.
EDTA (Becton Dickinson, #365973) for CBC analysis and 500 lL of plasma was
placed in a MicrotainerÒ tube containing heparin (Becton Dickinson, #365958)
for subsequent pharmacokinetic analysis (plasma exposure). Differential cell
counts were obtained using an AdviaÒ 120 hematology system (Bayer
Diagnostics).
15. Chiral-phase SFC of (+/ꢀ)-9e separately provided (+)-9e and (ꢀ)-9e. Separation
conditions: Chiralpak AD-H column (21 ꢁ 250 mm), mobile phase: 40% IPA