2324
H. Wakamatsu, M. Takeshita
LETTER
(2) For recent examples of transition-metal-catalyzed reaction
of ynamides, see: (a) Oppenheimer, J.; Johnson, W. L.;
Figueroa, R.; Hayashi, R.; Hsung, R. P. Tetrahedron 2009,
65, 5001. (b) Kramer, S.; Dooleweerdt, K.; Lindhardt, A. T.;
Rottlander, M.; Skrydstrup, T. Org. Lett. 2009, 11, 4208.
(c) Li, H.; Hsung, R. P. Org. Lett. 2009, 11, 4462.
(d) Gourdet, B.; Lam, H. W. J. Am. Chem. Soc. 2009, 131,
3802. (e) Zhang, Y.; DeKorver, K. A.; Lohse, A. G.; Zhang,
Y.-S.; Huang, J.; Hsung, R. P. Org. Lett. 2009, 11, 899.
(f) Garcia, P.; Moulin, S.; Miclo, Y.; Leboeuf, D.; Gandon,
V.; Aubert, C.; Malacria, M. Chem. Eur. J. 2009, 15, 2129.
(3) Mori, M.; Wakamatsu, H.; Saito, N.; Sato, Y.; Narita, R.;
Sato, Y.; Fujita, R. Tetrahedron 2006, 62, 3872.
the ortho disubstituent reduced the yield of coupling prod-
ucts 19 and 21 (entry 3, 5). The reaction of 16 with o-
iodotoluene 6 succeeded, and 20 was provided in 63%
yield (entry 4). We had certainty about the possitive effect
of electron-withdrawing group for copper-free Sonogash-
ira coupling of ynamides, because p-trifluoromethyl and
p-nitrile substituents led to good product yields (entry 6,
7).
Table 5 Sonogashira Cross-Coupling of Ynamide 16 with Aryl
Halidesa
Ph
(4) (a) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron
Lett. 1975, 16, 4467. (b) Chinchilla, R.; Nájera, C. Chem.
Rev. 2007, 107, 874.
O
N
(5) For recent examples of copper-free Sonogashira cross-
coupling, see: (a) Suzuka, T.; Okada, Y.; Ooshiro, K.;
Uozumi, Y. Tetrahedron 2010, 66, 1064. (b) John, A.;
Shaikh, M. M.; Ghosh, P. Dalton Trans. 2009, 10581.
(c) Blaszczyk, I.; Trzeciak, A. M.; Ziolkowski, J. J. Catal.
Lett. 2009, 133, 262. (d) Finke, A. D.; Elleby, E. C.; Boyd,
M. J.; Weissman, H.; Moore, J. S. J. Org. Chem. 2009, 74,
8897. (e) Gracia, S.; Metay, E.; Pellet-Rostaing, S.; Lemaire,
M. Synlett 2009, 2617. (f) Bakherad, M.; Keivanloo, A.;
Bahramian, B.; Mihanparast, S. Tetrahedron Lett. 2009, 50,
6418. (g) Wang, X.; Qin, W.; Kakusawa, N.; Yasuike, S.;
Kurita, J. Tetrahedron Lett. 2009, 50, 6293. (h) Mao, J.;
Wu, M.; Xie, G.; Ji, S. Adv. Synth. Catal. 2009, 351, 2101.
(i) Samantaray, M. K.; Shaikh, M. M.; Ghosh, P. J.
Organomet. Chem. 2009, 694, 3477. (j) Luo, Y.; Wu, J.
Tetrahedron 2009, 65, 6810. (k) Zhang, B.-S.; Wang, C.;
Gong, J.-F.; Song, M.-P. J. Organomet. Chem. 2009, 694,
2555. (l) Chandra, A.; Singh, B.; Khanna, R. S.; Singh, R.
M. J. Org. Chem. 2009, 74, 5664. (m) Kuang, Y.-Y.; Chen,
F.-E. Helv. Chim. Acta 2009, 92, 897. (n) Pschierer, J.;
Plenio, H. Org. Lett. 2009, 11, 2551. (o) Dash, C.; Shaikh,
M. M.; Ghosh, P. Eur. J. Inorg. Chem. 2009, 1608.
(p) Ngassa, F. N.; Lindsey, E. A.; Haines, B. E. Tetrahedron
2009, 65, 4085. (q) Bakherad, M.; Keivanloo, A.;
Ph
O
Pd(OAc)2, PPh3
NaOAc, DMF
16
+
O
N
X
O
I
17–23
X
2, 4–9
Entry
Aryl halides (X)
2 (4-EtO2C)
4 (H)
Products (X)
17 (4-EtO2C)
18 (H)
Yield (%)b
1
2
3
4
5
6
7
77
62
37
63
35
81
87
5 (4-MeO)
6 (2-Me)
19 (4-MeO)
20 (2-Me)
7 (2,6-di-Me)
8 (4-F3C)
21 (2,6-di-Me)
22 (4-F3C)
9 (4-NC)
23 (4-NC)
a Reaction conditions: 16 (1.0 equiv), ArX (1.2 equiv), Pd(OAc)2 (5
mol%), Ph3P (10 mol%), NaOAc (1.5 equiv), DMF, 80 °C, 1 h.
b Isolated yield.
Bahramian, B.; Hashemi, M. Tetrahedron Lett. 2009, 50,
1557. (r) Gu, S.; Chen, W. Organometallics 2009, 28, 909.
(s) Lu, N.; Chen, Y.-C.; Chen, W.-S.; Chen, T.-L.; Wu, S.-J.
J. Organomet. Chem. 2009, 694, 278. (t) Carpita, A.;
Ribecai, A. Tetrahedron Lett. 2009, 50, 204.
In conclusion, we have studied the palladium-catalyzed
copper-free Sonogashira cross-coupling of ynamides. The
presence of a small excess of the carboxylate anion, and
the absence of copper play an important role in this reac-
tion. The dimerization of ynamide was not observed, and
moderate to good yields of the coupling products were ob-
tained. Many different kinds of syntheses of ynamides
have now become possible, although it was recognized
that the transformation of nonsubstituted ynamides to sub-
stituted ynamides by Sonogashira cross-coupling was
limited, except for Hsung’s report.7 Further studies of this
reaction and the possibility of ynamides for transition-
metal-catalyzed reactions are now in progress in our lab-
oratory.
(6) Rodríguez, D.; Castedo, L.; Saá, C. Synlett 2004, 783.
(7) Tracey, M. R.; Zhang, Y.; Frederick, M. O.; Mulder, J. A.;
Hsung, R. P. Org. Lett. 2004, 6, 2209.
(8) Dooleweerdt, K.; Ruhland, T.; Skrydstrup, T. Org. Lett.
2009, 11, 221.
(9) Typical Procedure for Sonogashira Cross-Coupling
Reaction of Ynamide 1 Promoted by Palladium Acetate
To a solution of ynamide 1 (53.7 mg, 0.19 mmol), Pd(OAc)2
(2.1 mg, 9.41 mmol, 5 mol%), Ph3P (4.9 mg, 18.82 mmol, 10
mol%), and NaOAc (23.2 mg, 0.28 mmol, 1.5 equiv) in
DMF (6 mL) was added methyl 4-iodobenzoate 2 (0.04 mL,
0.23 mmol, 1.2 equiv) at 0 °C under argon atmosphere. The
reaction mixture was stirred at 80 °C for 1 h. After the
consumption of starting ynamide 1 was confirmed by TLC
analysis, the resulting mixture was cooled to 0 °C. H2O (12
mL) was added to the mixture, which was extracted with
Et2O (3 × 50 mL). The organic phase was washed with brine
and dried under MgSO4. The volatiles were removed under
reduce pressure. The residue was separated by column
chromatography on silica gel (hexane–EtOAc, 10:1) to
afford 3 (61.0 mg, 75%).
References and Notes
(1) For recent reviews on the chemistry of ynamines and
ynamides, see: (a) Zificsak, C. A.; Mulder, J. A.; Hsung,
R. P.; Rameshkumar, C.; Wei, L.-L. Tetrahedron 2001, 57,
7575. (b) Brückner, D. Tetrahedron 2006, 62, 3809; and
references cited therein.
Synlett 2010, No. 15, 2322–2324 © Thieme Stuttgart · New York