218
Conjugation of metal carbonyl dendrimer to antibody / N. Fischer-Durand et al. / Anal. Biochem. 407 (2010) 211–219
modified with dendrimer and polyaniline: a comparative research, Anal. Chim.
Acta 514 (2004) 79–88.
[26] L. Svobodova, M. Snejdarkova, T. Hianik, Properties of glucose biosensors based
on dendrimer layers: effect of enzyme immobilization, Anal. Bioanal. Chem.
373 (2002) 735–741.
[27] H.C. Yoon, D. Lee, H-S. Kim, Reversible affinity interactions of antibody
molecules at functionalized dendrimer monolayer: affinity-sensing surface
with reusability, Anal. Chim. Acta 456 (2002) 209–218.
[28] H-J. Seok, M-Y. Hong, Y-J. Kim, M-K. Han, D. Lee, J-H. Lee, J-S. Yoo, H-S. Kim,
Mass spectrometric analysis of affinity-captured proteins on a dendrimer-
based immunosensing surface: investigation of on-chip proteolytic digestion,
Anal. Biochem. 337 (2005) 294–307.
metallodendrimer conjugates retained an average of 55.1% of that
of the underivatized antibody. Finally, these conjugates were eval-
uated as a universal detection reagent for the solid-phase CMIA
quantification of rabbit IgG on nitrocellulose membrane. Signifi-
cantly enhanced intensities of the IR detection signal were ob-
served, confirming the efficiency of the new bioconjugation
strategy. The next step will be the development of a full solid-
phase immunoassay with primary and then secondary antigen–
antibody interactions for the quantification of relevant analytes.
[29] M.A. Rahman, H-B. Noh, Y-B. Shim, Direct electrochemistry of laccase
immobilized on Au nanoparticles encapsulated–dendrimer bonded
Acknowledgments
conducting polymer: application for
(2008) 8020–8027.
a catechin sensor, Anal. Chem. 80
The Centre National de la Recherche Scientifique and the French
Ministry of Research are gratefully acknowledged for financial
support.
[30] P. Singh, Dendrimers and their applications in immunoassays and clinical
diagnostics, Biotechnol. Appl. Biochem. 48 (2007) 1–9.
[31] K.K. Ong, A.L. Jenkins, R. Cheng, D.A. Tomalia, H.D. Durst, J.L. Jensen, P.A.
Emanuel, C.R. Swim, R. Yin, Dendrimer enhanced immunosensors for
biological detection, Anal. Chim. Acta 444 (2001) 143–148.
[32] M. Zhou, J. Roovers, G.P. Robertson, C.P. Grover, Multilabeling biomolecules at
References
a
single site: 1. Synthesis and characterization of a dendritic label for
electrochemiluminescence assays, Anal. Chem. 75 (2003) 6708–6717.
[33] C. Wu, M.W. Brechbiel, R.W. Kozak, O.A. Gansow, Metal–chelate–dendrimer–
antibody constructs for use in radioimmunotherapy and imaging, Bioorg. Med.
Chem. Lett. 4 (1994) 449–454.
[34] H. Kobayashi, C. Wu, M-K. Kim, C.H. Paik, J.A. Carrasquillo, M.W. Brechbiel,
Evaluation of the in vivo biodistribution of indium-111 and yttrium-88 labeled
dendrimer–1B4M–DTPA and its conjugation with anti-Tac monoclonal
antibody, Bioconjugate Chem. 10 (1999) 103–111.
[35] A.K. Patri, A. Myc, J. Beals, T.P. Thomas, N.H. Bander, J.R. Baker Jr., Synthesis and
in vitro testing of J591 antibody–dendrimer conjugates for targeted prostate
cancer therapy, Bioconjugate Chem. 15 (2004) 1174–1181.
[36] T.P. Thomas, A.K. Patri, A. Myc, M.T. Myaing, J.Y. Ye, T.B. Norris, J.R. Baker Jr., In
vitro targeting of synthesized antibody-conjugated dendrimer nanoparticles,
Biomacromolecules 5 (2004) 2269–2274.
[37] R. Shukla, T.P. Thomas, J.L. Peters, A.M. Desai, J. Kukowska-Latallo, A.K. Patri, A.
Kotlyar, J.R. Baker Jr., HER2 specific tumor targeting with dendrimer
conjugated anti-HER2 mAb, Bioconjugate Chem. 17 (2006) 1109–1115.
[38] C. Wängler, G. Moldenhauer, M. Eisenhut, U. Haberkorn, W. Mier, Antibody–
dendrimer conjugates: the number, not the size of the dendrimers, determines
the immunoreactivity, Bioconjugate Chem. 19 (2008) 813–820.
[1] D.A. Tomalia, H. Baker, J.R. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J.
Ryder, P. Smith, A new class of polymers: Starburst-dendritic macromolecules,
Polym. J. 17 (1985) 117–132.
[2] D.A. Tomalia, H. Baker, J.R. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J.
Ryder, P. Smith, Dendritic macromolecules: synthesis of Starburst dendrimers,
Macromolecules 19 (1986) 2466–2468.
[3] D.A. Tomalia, A.M. Naylor, W.A. Goddard III, Starburst dendrimers: molecular-
level control of size, shape, surface chemistry, topology, and flexibility from
atoms to macroscopic matter, Angew. Chem. Int. Ed. 29 (1990) 138–175.
[4] D.A. Tomalia, Birth of a new macromolecular architecture: dendrimers as
quantized building blocks for nanoscale synthetic polymer chemistry, Prog.
Polym. Sci. 30 (2005) 294–324.
[5] G.T. Hermanson, Bioconjugate Techniques, Academic Press, San Diego, 2008.
[6] A.R. Menjoge, R.M. Kannan, D.A. Tomalia, Dendrimer-based drug and imaging
conjugates: design considerations for nanomedical applications, Drug
Discovery Today 15 (2010) 171–185.
[7] I.J. Majoros, C.R. Williams, J.R. Baker, Current dendrimer applications in cancer
diagnosis and therapy, Curr. Top. Med. Chem. 8 (2008) 1165–1179.
[8] S. Svenson, Dendrimers as versatile platform in drug delivery applications, Eur.
J. Pharm. Biopharm. 71 (2009) 445–462.
[9] S.H. Medina, M.E.H. El-Sayed, Dendrimers as carriers for delivery of
chemotherapeutic agents, Chem. Rev. 109 (2009) 3141–3157.
[10] C.M. Paleos, D. Tsiourvas, Z. Sideratou, Molecular engineering of dendritic
polymers and their application as drug and gene delivery systems, Mol. Pharm.
4 (2007) 169–188.
[11] N.K. Jain, A. Asthana, Dendritic systems in drug delivery applications, Expert
Opin. Drug Deliv. 4 (2007) 495–512.
[12] S. Bai, C. Thomas, A. Rawat, F. Ahsan, Recent progress in dendrimer-based
nanocarriers, Crit. Rev. Ther. Drug Carrier Syst. 23 (2006) 437–495.
[13] U. Boas, P.M.H. Heegaard, Dendrimers in drug research, Chem. Soc. Rev. 33
(2004) 43–63.
[14] Y. Cheng, Z. Xu, M. Ma, T. Xu, Dendrimers as drug carriers: applications in
different routes of drug administration, J. Pharm. Sci. 97 (2008) 123–143.
[15] R. Esfand, D.A. Tomalia, Poly(amidoamine) (PAMAM) dendrimers: from
biomimicry to drug delivery and biomedical applications, Drug Discovery
Today 6 (2001) 427–436.
[16] E.R. Gillies, J.M.J. Fréchet, Dendrimers and dendritic polymers in drug delivery,
Drug Discovery Today 10 (2005) 35–43.
[17] A.K. Patri, I.J. Majoros, J.R. Baker Jr., Dendritic polymer macromolecular carriers
for drug delivery, Curr. Opin. Chem. Biol. 6 (2002) 466–471.
[18] S. Svenson, D.A. Tomalia, Dendrimers in biomedical applications: reflections
on the field, Adv. Drug Deliv. Rev. 57 (2005) 2106–2129.
[19] V.J. Venditto, C.A.S. Regino, M.W. Brechbiel, PAMAM dendrimer based
macromolecules as improved contrast agents, Mol. Pharm. 2 (2005) 302–311.
[20] H. Kobayashi, M.W. Brechbiel, Nano-sized MRI contrast agents with dendrimer
cores, Adv. Drug Deliv. Rev. 57 (2005) 2271–2286.
[21] S-E. Stiriba, H. Frey, R. Haag, Dendritic polymers in biomedical applications:
from potential to clinical use in diagnostics and therapy, Angew. Chem. Int. Ed.
41 (2002) 1329–1334.
[22] H. Xu, C.A.S. Regino, Y. Koyama, Y. Hama, A.J. Gunn, M. Bernardo, H. Kobayashi,
P.L. Choyke, M.W. Brechbiel, Preparation and preliminary evaluation of a
biotin-targeted, lectin-targeted dendrimer-based probe for dual-modality
magnetic resonance and fluorescence imaging, Bioconjugate Chem. 18
(2007) 1474–1482.
[39] R.F. Barth, D.M. Adams, A.H. Soloway, F. Alam, M.V. Darby, Boronated Starburst
dendrimer–monoclonal antibody immunoconjugates: evaluation as
a
potential delivery system for neutron capture therapy, Bioconjugate Chem. 5
(1994) 58–66.
[40] R. Shukla, T.P. Thomas, A.M. Desai, A. Kotlyar, S.J. Park, J.R. Baker Jr., HER2
specific delivery of methotrexate by dendrimer conjugated anti-HER2 mAb,
Nanotechnology 19 (2008) 295102–295108.
[41] J.C. Roberts, Y.E. Adams, D.A. Tomalia, J.A. Mercer-Smith, D.K. Lavallee, Using
Starburst dendrimers as linker molecules to radiolabel antibodies,
Bioconjugate Chem. 1 (1990) 305–308.
[42] L.P. Tolic, G.A. Anderson, R.D. Smith, H.M. Brothers II, R. Spindler, D.A. Tomalia,
Electrospray ionization Fourier transform ion cyclotron resonance mass
spectrometric characterization of high molecular mass Starburst dendrimers,
Int. J. Mass Spectrom. Ion Processes 165-166 (1997) 405–418.
[43] G. Wu, R.F. Barth, W. Yang, M. Chatterjee, W. Tjarks, M.J. Ciesielski, R.A.
Fenstermaker, Site-specific conjugation of boron-containing dendrimers to
anti-EGF receptor monoclonal antibody Cetuximab (IMB-C225) and its
evaluation as
a potential delivery agent for neutron capture therapy,
Bioconjugate Chem. 15 (2004) 185–194.
[44] N. Fischer-Durand, M. Salmain, B. Rudolf, A. Vessières, J. Zakrzewski, G. Jaouen,
Synthesis of metal–carbonyl–dendrimer–antibody immunoconjugates:
towards a new format for carbonyl metallo immunoassay, ChemBioChem 5
(2004) 519–525.
[45] M. Salmain, A. Vessières, G. Jaouen, I.S. Butler, Fourier transform infrared
spectroscopic method for the quantitative trace analysis of transition-metal
carbonyl-labeled bioligands, Anal. Chem. 63 (1991) 2323–2329.
[46] M. Salmain, A. Vessières, P. Brossier, I.S. Butler, G. Jaouen,
Carbonylmetalloimmunoassay (CMIA),
a new type of non-radioisotopic
immunoassay: Principles and application to phenobarbital assay, J. Immunol.
Methods 148 (1992) 65–75.
[47] A. Vessières, M. Salmain, P. Brossier, G. Jaouen, Carbonyl metallo
immunoassay:
a
new application for Fourier transform infrared
spectroscopy, J. Pharm. Biomed. Anal. 21 (1999) 625–633.
[48] A. Vessières, F. Le Bideau, N. Fischer-Durand, P. Janvier, J-M. Heldt, S. Ben
Rejeb, G. Jaouen, First carbonyl metallo immunoassay (CMIA) in the
environmental area: application to the herbicide chlortoluron, Appl.
Organomet. Chem. 16 (2002) 669–674.
[49] M. Salmain, A. Vessières, Organometallic complexes as tracers in non-isotopic
immunoassay, in: G. Jaouen (Ed.), Bioorganometallics, Biomolecules, Labeling,
Medicine, Wiley–VCH, Weinheim, Germany, 2006, pp. 263–302.
[50] N. Fischer-Durand, M. Salmain, B. Rudolf, L. Jugé, V. Guérineau, O. Laprévote, A.
Vessières, G. Jaouen, Design of a new multifunctionalized PAMAM dendrimer
with hydrazide-terminated spacer arm suitable for metal–carbonyl
[23] C. Wängler, G. Moldenhauer, R. Saffrich, E-M. Knapp, B. Beijer, M. Schnölzer, B.
Wängler, M. Eisenhut, U. Haberkorn, W. Mier, PAMAM structure-based
multifunctional fluorescent conjugates for improved fluorescent labeling of
biomacromolecules, Chem. Eur. J. 14 (2008) 8116–8130.
[24] L. Svobodova, M. Snejdarkova, V. Polohova, I. Grman, P. Rybar, T. Hianik, QCM
immunosensor based on polyamidoamine dendrimers, Electroanalysis 18
(2006) 1943–1949.
[25] M. Snejdarkova, L. Svobodova, G. Evtugyn, H. Budnikov, A. Karyakin, D.P.
Nikolelis, T. Hianik, Acetylcholinesterase sensors based on gold electrodes