Recently, we reported the novel biomimetic syntheses of
bioactive resorcylate natural products 9 utilizing an inter-
molecular ketene trapping and late-stage aromatization7
approach starting from diketo-dioxinone 7 (Scheme 1).8,9
Scheme 2. Retrosynthetic Analysis of LL-Z1640-2 (3)
Scheme 1
.
Use of Diketo-dioxinones 7 as Precursors for the
Synthesis of Resorcylates 9
This methodology was recently extended to intramolecular
ketene trapping and transannular aromatization, replacing the
use of RCM for macrolactonization. The efficacy of this
novel strategy was first demonstrated through the application
for the synthesis of the resorcylic acid lactone, (S)-(-)-
zearalenone (4).10 This ketene trapping macrocyclization
process is an adaption of the excellent methodology intro-
duced by Boeckman and applied by others.11
Herein, we report a novel and efficient biomimetic
synthesis of LL-Z1640-2 (3), without phenol protection,
where macrolactonization and transannular aromatization are
carried out consecutively to build the resorcylic core. It is
noteworthy that this intramolecular ketene trapping-late-stage
aromatization approach should be sufficiently concise for
analogue synthesis such as mitogen-activated protein kinase
(MAPK) inhibitor hypothemycin (5) and MAPK kinase
(MEK) inhibitor LL-783,277 (6).
cylate unit could be constructed by late-stage transannular
aromatization of macrocyclic triketo-ester 2, which may be
prepared by macrolactonization via intramolecular trapping
of the ketene derived from diketo-dioxinone 1. This in turn
could be synthesized by acylation of Weinreb amide 11 with
the dianion derived from keto-dioxinone 12.
Our retrosynthetic analysis is illustrated in Scheme 2. LL-
Z1640-2 (3) should be available following methylation,
acetonide and EOM deprotection, and selective allylic
oxidation of resorcylate 10. We considered that the resor-
Weinreb amide 11 was synthesized in seven steps from
commercially available 2-deoxy-D-ribose (Schemes 3 and 4).
(5) (a) Tatsuta, K.; Takano, S.; Sato, T.; Nakano, S. Chem. Lett. 2001,
172. (b) Selle`s, P.; Lett, R. Tetrahedron Lett. 2002, 43, 4627. (c) Winssinger,
N.; Barluenga, S. Chem. Commun. 2007, 22. (d) Hofmann, T.; Altmann,
H.-K. C. R. Chim. 2008, 11, 1318. (e) Dakas, P. Y.; Jogireddy, R.; Valot,
G.; Barluenga, S.; Winssinger, N. Chem.sEur. J. 2009, 15, 11490.
(6) Henry, N.; Murray, M. N.; Robertson, N.; Marquez, R. Tetrahedron
Lett. 2007, 48, 6088.
Scheme 3. Synthesis of Dioxolane 17
(7) (a) Harris, C. M.; Harris, T. M. Tetrahedron 1977, 33, 2159. (b)
Hubbard, J. S.; Harris, T. M. J. Org. Chem. 1981, 46, 2566.
(8) (a) Navarro, I.; Basset, J.-F.; Hebbe, S.; Major, S. M.; Werner, T.;
Howsham, C.; Brackow, J.; Barrett, A. G. M. J. Am. Chem. Soc. 2008,
130, 10293. (b) Calo, F.; Richardson, J.; Barrett, A. G. M. Org. Lett. 2009,
11, 4910. (c) Basset, J.-F.; Leslie, C.; Hamprecht, D.; White, A. J. P.; Barett,
A. G. M. Tetrahedron Lett. 2010, 51, 783. (d) Navarro, I.; Po¨verlein, C.;
Schlingmann, G.; Barrett, A. G. M. J. Org. Chem. 2009, 74, 8139
(9) The diketo-dioxinones and triketo-compounds exist as keto-enol
mixture. For simplicity, keto-forms are drawn.
.
(10) Miyatake-Ondozabal, H.; Barrett, A. G. M. Tetrahedron 2010, 66,
6331.
(11) Boeckman, R. K. Jr.; Pruitt, J. R. J. Am. Chem. Soc. 1989, 111,
8286. Boeckman, R. K., Jr.; Barta, T. E.; Nelson, S. G. Tetrahedron Lett.
1991, 32, 4091. Boeckman, R. K., Jr.; Weidner, C. H.; Perni, R. B.; Napier,
J. J. J. Am. Chem. Soc. 1989, 111, 8036. Boeckman, R. K., Jr.; Shao, P.;
Wrobleski, S. T.; Boehmler, D. J.; Heintzelman, G. R.; Barbosa, A. J. J. Am.
Chem. Soc. 2006, 128, 10572. Boeckman, R. K., Jr.; Goldstein, S. W. Total
Synth. Nat. Prod. 1988, 7, 1. Boeckman, R. K., Jr.; Perni, R. B. J. Org.
Chem. 1986, 51, 5486. Boeckman, R. K., Jr.; Starrett, J. E., Jr.; Nickell,
D. G.; Sum, P. E. J. Am. Chem. Soc. 1986, 108, 5549. For application of
intramolecular capture of acyl-ketenes in natural product synthesis, see the
excellent review by: Reber, K. P.; Tilley, S. D.; Sorensen, E. J. Chem. Soc.
ReV. 2009, 38, 3022.
Lactol 1312 was subjected to Wittig olefination to give R,ꢀ-
unsaturated ester 14 (80%) with excellent E:Z selectivity.
Following Parikh-Doering oxidation, aldehyde 15 was
obtained, and subsequent treatment with the lithiated alkyne
5574
Org. Lett., Vol. 12, No. 23, 2010