Journal of the American Chemical Society
Page 4 of 5
T. Chem. Eur. J. 2009, 15, 8692–8694. (d) Nicolaou, K. C.; Li,
process exhibits a degree of chemoselectivity not
reported for any other metal-catalyzed
cycloisomerization. It is also important to note that this
new chiral catalyst is effective for two very different
types of processes, allylic alkylation and redox
1
2
3
4
5
6
7
8
A.; Ellery, S. P.; Edmonds, D. J. Angew. Chem. Int. Ed. 2009,
48, 6293–6295. (e) Nishimura, T.; Maeda, Y.; Hayashi, T. Org.
Lett. 2011, 13, 3674–3677. (f) Nishimura, T.; Takiguchi, Y.;
Maeda, Y.; Hayashi, T. Adv. Synth. Catal. 2013, 355, 1374–
1382.
(9) (a) Kündig, E. P.; Saudan, C. M.; Bernardinelli, G. Angew.
Chem. Int. Ed. 1999, 38, 1219–1223. (b) Brinkmann, Y.;
Madhushaw, R. J.; Jazzar, R.; Bernardinelli, G.; Kündig, E. P.
Tetrahedron 2007, 63, 8413–8419. (c) Bădoiu, A.;
Bernardinelli, G.; Mareda, J.; Kündig, E. P.; Viton, F. Chemistry
– An Asian Journal 2008, 3, 1298–1311.
bicycloisomerization. Such
a feature encourages
examination of this new chiral catalyst for other
ruthenium-catalyzed reactions. Ongoing studies are
currently being performed to elucidate the mechanism
of this transformation.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(10) (a) Maas, G. Chem. Soc. Rev. 2004, 33, 183–190. (b)
Nishiyama, H. In Ruthenium Catalysts and Fine Chemistry;
Bruneau, C.; Dixneuf, P. H., Eds.; Topics in Organometallic
Chemistry; Springer Berlin Heidelberg, 2004; pp. 81–92 and
references therein.
ASSOCIATED CONTENT
Supporting Information. Experimental Details,
crystallographic data, and characterization data. This
material is available free of charge via the Internet at
(11) (a) Matsushima, Y.; Onitsuka, K.; Kondo, T.; Mitsudo, T.;
Takahashi, S. J. Am. Chem. Soc. 2001, 123, 10405–10406.
(b) Onitsuka, K.; Matsushima, Y.; Takahashi, S. Organometallics
2005, 24, 6472–6474. (c) Onitsuka, K.; Okuda, H.; Sasai, H.
Angew. Chem. Int. Ed. 2008, 47, 1454–1457. (d) Kanbayashi,
N.; Onitsuka, K. J. Am. Chem. Soc. 2010, 132, 1206–1207. (e)
Kanbayashi, N.; Onitsuka, K. Angew. Chem. Int. Ed. 2011, 50,
5197–5199. (f) Kanbayashi, N.; Takenaka, K.; Okamura, T.;
Onitsuka, K. Angew. Chem. Int. Ed. 2013, 52, 4897–4901.
(12) For Reviews see: (a) Arockiam, P. B.; Bruneau, C.; Dixneuf,
P. H. Chem. Rev. 2012, 112, 5879–5918. (b) Trost, B. M.;
Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067–
2096. (c) Trost, B. M.; Frederiksen, M. U.; Rudd, M. T. Angew.
Chem. Int. Ed. 2005, 44, 6630–6666.
AUTHOR INFORMATION
Corresponding Author
ACKNOWLEDGMENT
We would like to thank the NSF for their generous
support (NSF-CHE-1145236), Dr. Allen Oliver (X-Ray
Crystallographic Laboratory, Notre Dame University) is
gratefully acknowledged for assistance in growing
crystals and XRD analysis.
(13) Trost, B. M.; Breder, A.; O’Keefe, B. M.; Rao, M.; Franz, A.
W. J. Am. Chem. Soc. 2011, 133, 4766–4769.
(14) (a) Hiroi, K. Curr. Org. Synth. 2008, 5, 305-320. (b) Mariz,
R.; Luan, X.; Gatti, M.; Linden, A.; Dorta, R. J. Am. Chem. Soc.
2008, 130, 2172–2173. (c) Chen, Q.-A.; Dong, X.; Chen, M.-
W.; Wang, D.-S.; Zhou, Y.-G.; Li, Y.-X. Org. Lett. 2010, 12,
1928–1931. (d) Mariz, R.; Poater, A.; Gatti, M.; Drinkel, E.;
Bürgi, J. J.; Luan, X.; Blumentritt, S.; Linden, A.; Cavallo, L.;
Dorta, R. Chem. Eur. J. 2010, 16, 14335–14347. (e) Baker, R.
W.; Radzey, H.; Lucas, N. T.; Turner, P. Organometallics 2012,
31, 5622–5633.
(15) See for example: (a) Komatsuzaki, N.; Uno, M.; Kikuchi, H.;
Takahashi, S. Chemistry Letters 1996, 25, 677–678. (b) Dodo,
N.; Matsushima, Y.; Uno, M.; Onitsuka, K.; Takahashi, S. J.
Chem. Soc., Dalton Trans. 2000, 35–41.
REFERENCES
(1) (a) Fairlamb, I. J. S. Angew. Chem. Int. Ed. 2004, 43, 1048–
1052. (b) Watson, I. D. G.; Toste, F. D. Chem. Sci. 2012, 3,
2899–2919. (c) For a review of achiral cycloisomerization
reactions see: Michelet, V.; Toullec, P. Y.; Genêt, J.-P. Angew.
Chem. Int. Ed. 2008, 47, 4268–4315.
(2) Trost, B. M. Science 1991, 254, 1471–1477.
(3) Wender, P. A.; Verma, V. A.; Paxton, T. J.; Pillow, T. H. Acc.
Chem. Res. 2008, 41, 40–49.
(4) Burns, N. Z.; Baran, P. S.; Hoffmann, R. W. Angew. Chem.
Int. Ed. 2009, 48, 2854–2867.
(5) (a) Chao, C.-M.; Vitale, M. R.; Toullec, P. Y.; Genêt, J.-P.;
Michelet, V. Chem. Eur. J. 2009, 15, 1319–1323. (b) Uemura,
M.; Watson, I. D. G.; Katsukawa, M.; Toste, F. D. J. Am. Chem.
Soc. 2009, 131, 3464–3465. (c) Martínez, A.; García-García,
P.; Fernández-Rodríguez, M. A.; Rodríguez, F.; Sanz, R.
Angew. Chem. Int. Ed. 2010, 49, 4633–4637. (d) Teller, H.;
Fürstner, A. Chem. Eur. J. 2011, 17, 7764–7767.
(6) (a) Feducia, J. A.; Campbell, A. N.; Doherty, M. Q.; Gagné,
M. R. J. Am. Chem. Soc. 2006, 128, 13290–13297. (b) Han,
X.; Widenhoefer, R. A. Org. Lett. 2006, 8, 3801–3804. (c)
Brissy, D.; Skander, M.; Jullien, H.; Retailleau, P.; Marinetti, A.
Org. Lett. 2009, 11, 2137–2139.
(7) (a) Goeke, A.; Kuwano, R.; Ito, Y.; Sawamura, M. Angew.
Chem. Int. Ed. Engl. 1996, 35, 662–663. (b) Zhang, Q.; Lu, X.;
Han, X. J. Org. Chem. 2001, 66, 7676–7684. (c) Hatano, M.;
Terada, M.; Mikami, K. Angew. Chem. Int. Ed. 2001, 40, 249–
253. (d) Hatano, M.; Mikami, K. J. Am. Chem. Soc. 2003, 125,
4704–4705.
(8) (a) Cao, P.; Zhang, X. Angew. Chem. Int. Ed. 2000, 39,
4104–4106. (b) Wender, P. A.; Haustedt, L. O.; Lim, J.; Love, J.
A.; Williams, T. J.; Yoon, J.-Y. J. Am. Chem. Soc. 2006, 128,
6302–6303. (c) Shintani, R.; Nakatsu, H.; Takatsu, K.; Hayashi,
(16) Trost, B. M.; Rao, M.; Dieskau, A. P. J. Am. Chem. Soc.
2013, 135, 18697–18704.
(17) (a) Bertani, B., Di Fabio, R., Micheli, F., Tedesco, G., &
Terreni, S., WO 2008031772A1, 2008. (b) Micheli, F.; Cavanni,
P.; Andreotti, D.; Arban, R.; Benedetti, R.; Bertani, B.; Bettati,
M.; Bettelini, L.; Bonanomi, G.; Braggio, S.; Carletti, R.;
Checchia, A.; Corsi, M.; Fazzolari, E.; Fontana, S.; Marchioro,
C.; Merlo-Pich, E.; Negri, M.; Oliosi, B.; Ratti, E.; Read, K. D.;
Roscic, M.; Sartori, I.; Spada, S.; Tedesco, G.; Tarsi, L.;
Terreni, S.; Visentini, F.; Zocchi, A.; Zonzini, L.; Di Fabio, R. J.
Med. Chem. 2010, 53, 4989–5001.
(18) Other catalyst systems were tried, but catalyst 1 proved to
be the most reactive and enantioselective for the
transformation. See Supporting Information for details.
(19) All of the redox bicycloisomerization reactions presented
proceed to full conversion. The remaining mass balance is a
mixture of acyclic redox isomerization and β-hydride elimination
products. For more information, see ref. 13.
(20) Trost, B. M.; Quintard, A. Angew. Chem. Int. Ed. 2012,
51, 6704–6708.
4
ACS Paragon Plus Environment