the reaction between this type of dinucleophile and
bromonitrostyrene8d 2 could lead to the targeted dihydrofuran
3 (Scheme 1). The proposed reaction sequence would involve
was obtained when the bifunctional thiourea 4 was used as
the catalyst in chloroform at -20 °C (Table 1, entry 1).
Table 1. Optimization of the Reaction Conditionsa
Scheme 1. Synthetic Approach to Dihydrofurans
entry
base
None
KOAc
K2CO3
Pyridine
Lutidine
DMAP
DABCO
Et2NH
Et3N
TMEDA
TMEDA
TMEDA
yield (%)
ee (%)
1
2
3
4
5
6
7
8
20
54
86
59
63
78
68
59
58
82
89
88
77
6
the enantiocontrolled Michael addition of diketone 1 to the
(E)-ꢀ,ꢀ-bromonitrostyrene 2a, followed by the diastereose-
lective cyclization requiring nucleophilic substitution of the
bromide to yield the desired polysubstituted dihydrofurans.
Furthermore, it was hoped that the chiral induction may be
achieved by activation of the bromonitrostyrene employing
a hydrogen bond donor catalyst.9
78
58
74
70
0
68
66
82
81
80
9
To verify this hypothesis, we conducted a series of
reactions between the dimedone 1a and the (E)-ꢀ,ꢀ-bro-
monitrostyrene 2a using different bifunctional cinchona
alkaloid catalysts.10,11 In all cases formation of the product
3a was observed but the best enantioselectivity (77% ee)
10
11b
12c
a Reactions were run on 0.4 mmol scale using diketone (1.0 equiv),
bromonitrostyrene (1.0 equiv), thiourea catalyst 4 (10 mol %), base (10
mol %) in CHCl3 (0.2 M) at -20 °C for 48 h. b TMEDA (20 mol %) was
used. c TMEDA (20 mol %) and 20 mol % catalyst 4 were used.
(5) (a) Evans, D. A.; Sweeney, Z. K.; Rovis, T.; Tedrow, J. S. J. Am.
Chem. Soc. 2001, 123, 12095. (b) Son, S.; Fu, G. C. J. Am. Chem. Soc.
2007, 129, 1046. (c) Ozawa, F.; Kubo, A.; Matsumoto, Y.; Hayashi, T.
Organometallics 1993, 12, 4188. Both metal and chiral auxiliary are used
in this example: (d) Davies, H. M. L.; Ahmed, G.; Calvo, R. L.; Churchill,
M. R.; Churchill, D. G. J. Org. Chem. 1998, 63, 2641. (e) Mu¨ller, P.;
Bernardinelli, G.; Allenbach, Y. F.; Ferri, M.; Grass, S. Synlett 2005, 1397.
(6) (a) Silva, F.; Sawicki, M.; Gouverneur, V. Org. Lett. 2006, 8, 5417.
(b) Calter, M. A.; Phillips, R. M.; Flaschenriem, C. J. Am. Chem. Soc. 2005,
127, 14566. (c) Chen, H.; Jiang, R.; Wang, Q. F.; Sun, X. L.; Luo, J.; Zhang,
S. Y. Chin. Chem. Lett. 2010, 21, 167.
However, the yields and conversions to the cyclic com-
pound 3a remained poor. Furthermore, lower temperatures
caused the reaction to proceed slowly without increasing
(11) Selected recent examples for the use of cinchona alkaloid derived
thiourea catalysts: (a) Biddle, M. M.; Lin, M.; Scheidt, K. A. J. Am. Chem.
Soc. 2007, 129, 3830. (b) Dine´r, P.; Nielsen, M.; Bertelsen, S.; Niess, B.;
Jørgensen, K. A. Chem. Commun. 2007, 3646. (c) Hynes, P. S.; Stranges,
D.; Stupple, P. A.; Guarna, A.; Dixon, D. J. Org. Lett. 2007, 9, 2107. (d)
Lubkoll, J.; Wennemers, H. Angew. Chem., Int. Ed. 2007, 46, 6841. (e)
Wang, Y.; Li, H.; Wang, Y.-Q.; Liu, Y.; Foxman, B. M.; Deng, L. J. Am.
Chem. Soc. 2007, 129, 6364. (f) Zu, L.; Wang, J.; Li, H.; Xie, H.; Jiang,
W.; Wang, W. J. Am. Chem. Soc. 2007, 129, 1036. (g) Wang, J.; Xie, H.;
Li, H.; Zu, L.; Wang, W. Angew. Chem., Int. Ed. 2008, 47, 4177. (h) Elsner,
P.; Jiang, H.; Nielsen, J. B.; Pasi, F.; Jørgensen, K. A. Chem. Commun.
2008, 5827. (i) Aleman, J.; Milelli, A.; Cabrera, S.; Reyes, E.; Jørgensen,
K. A. Chem.sEur. J. 2008, 14, 10958. (j) Gioia, C.; Hauville, A.; Bernardi,
L.; Fini, F.; Ricci, A. Angew. Chem., Int. Ed. 2008, 47, 9236. (k) Li, D. R.;
Murugan, A.; Falck, J. R. J. Am. Chem. Soc. 2008, 130, 46. (l) Liu, Y.;
Sun, B.; Wang, B.; Wakem, M.; Deng, L. J. Am. Chem. Soc. 2009, 131,
418. (m) Wang, J.; Xie, H.; Li, H.; Zu, L.; Wang, W. Angew. Chem., Int.
Ed. 2008, 47, 4177. (n) Ta´rka´nyi, G.; Kira´ly, P.; Varga, S.; Vakulya, B.;
Soo´s, T. Chem.sEur. J. 2008, 14, 6078. (o) Yang, T.; Ferrali, A.;
Sladojevich, F.; Campbell, L.; Dixon, D. J. J. Am. Chem. Soc. 2009, 131,
9140. (p) Dickmeiss, G.; De Sio, V.; Udmark, J.; Poulsen, T. B.; Marcos,
V.; Jørgensen, K. A. Angew. Chem., Int. Ed. 2009, 48, 6650. (q) Nodes,
W. J.; Nutt, D. R.; Chippindale, A. M.; Cobb, A. J. A. J. Am. Chem. Soc.
2009, 131, 16016. (r) Rueping, M.; Kuenkel, A.; Fro¨hlich, R. Chem.sEur.
J. 2010, 16, 4173. (s) Zhang, W.; Zheng, S.; Liu, N.; Werness, J. B.; Guzei,
I. A.; Tang, W. J. Am. Chem. Soc. 2010, 132, 3664. (t) Zhang, H.; Syed,
S.; Barbas, C. F., III Org. Lett. 2010, 12, 708. (u) Tan, B.; Lu, Y.; Zeng,
X.; Chua, P. J.; Zhong, G. Org. Lett. 2010, 12, 2682.
(7) Rueping, M.; Lin, M. Y. Chem.sEur. J. 2010, 16, 4169.
(8) (a) Rueping, M.; Sugiono, E.; Merino, E. Chem.sEur. J. 2008, 14,
6329. (b) Rueping, M.; Merino, E.; Sugiono, E. AdV. Synth. Catal. 2008,
350, 2127. (c) Rueping, M.; Kuenkel, A.; Tato, F.; Bats, J. W. Angew.
Chem., Int. Ed. 2009, 48, 3699. (d) Rueping, M.; Parra, A. Org. Lett. 2010,
12, 5281.
(9) (a) Schreiner, P. R. Chem. Soc. ReV. 2003, 32, 289. (b) Doyle, A. G.;
Jacobsen, E. N. Chem. ReV. 2007, 107, 5713. (c) Taylor, M. S.; Jacobsen,
E. N. Angew. Chem., Int. Ed. 2006, 45, 1520. (d) Miyabe, H.; Takemoto,
Y. Bull. Chem. Soc. Jpn. 2008, 81, 785. (e) Zhang, Z.; Schreiner, P. R.
Chem. Soc. ReV. 2009, 38, 1187.
(10) For pioneering work in the field of cinchona alkaloid derived
thiourea catalysis, see (a) Vakulya, B.; Varga, S.; Csampai, A.; Soo´s, T.
Org. Lett. 2005, 7, 1967. (b) Ye, J.; Dixon, D. J.; Hynes, P. Chem. Commun.
2005, 4481. (c) McCooey, S. H.; Connon, S. J. Angew. Chem., Int. Ed.
2005, 44, 6367. (d) Mattson, A. E.; Zuhl, A. M.; Reynolds, T. E.; Scheidt,
K. A. J. Am. Chem. Soc. 2006, 128, 4932. (e) Song, J.; Wang, Y.; Deng,
L. J. Am. Chem. Soc. 2006, 128, 6048. (f) Bernardi, L.; Fini, F.; Herrera,
R. P.; Ricci, A.; Sgarzani, V. Tetrahedron 2006, 62, 375. (g) Berkessel,
A.; Mukherjee, S.; Mueller, T. N.; Cleemann, F.; Roland, K.; Brandenburg,
M.; Neudoerfl, J.-M.; Lex, J. Org. Biomol. Chem. 2006, 4, 4319. (h) Tillman,
A. L.; Ye, J.; Dixon, D. J. Chem. Commun. 2006, 1191. (i) Wang, J.; Li,
H.; Zu, L.; Jiang, W.; Xie, H.; Duan, W.; Wang, W. J. Am. Chem. Soc.
2006, 128, 12652. (j) Wang, Y.-Q.; Song, J.; Hong, R.; Li, H.; Deng, L.
J. Am. Chem. Soc. 2006, 128, 8156
.
Org. Lett., Vol. 12, No. 24, 2010
5681