J. B. Hester, D. K. Hutchinson, J. Morris, R. J. Reischer, C. W. Ford,
Conclusion
G. E. Zurenko, J. C. Hamel, R. D. Schaadt, D. Stapert and B. H.
Yagi, J. Med. Chem., 2000, 43, 953; (c) R. Alvarez, S. Velazquez,
A. San-Felix, S. Aquaro, E. D. Clercq, C. F. Perno, A. Karlsson, J.
Balzarini and M. J. Camarasa, J. Med. Chem., 1994, 37, 4185.
2 (a) S. Wacharasindhu, S. Bardhan, Z.-K. Wan, K. Tabei and T. S.
Mansour, J. Am. Chem. Soc., 2009, 131, 4174; (b) Y. X. Liu, W. M.
Yan, Y. F. Chen, J. L. Petersen and X. D. Shi, Org. Lett., 2008, 10,
5389; (c) A. R. Katritzky, S. Bobrov, Kirichenko Kostyantyn, Y. Ji
and P. J. Steel, J. Org. Chem., 2003, 68, 5713; (d) A. K. Reid, C. J.
McHugh, G. Richie and D. Graham, Tetrahedron Lett., 2006, 47,
4201; (e) A. K. Verma, J. Singh and R. Chaudhary, Tetrahedron
Lett., 2007, 48, 7199; (f) Q. Dai, W. Gao, D. Liu, L. M. Kapzes and
X. Zhang, J. Org. Chem., 2006, 71, 3928.
3 (a) R. Manetsch, A. Krasiski, Z. Radi, J. Raushel, P. Taylor, K. B.
Sharpless and H. C. Kolb, J. Am. Chem. Soc., 2004, 126, 12809; (b) M.
Whiting, J. Muldoon, Y. C. Lin, S. M. Silverman, W. Lindstrom, A. J.
Olson, H. C. Kolb, M. G. Finn, K. B. Sharpless, J. H. Elder and V. V.
Fokin, Angew. Chem., Int. Ed., 2006, 45, 1435; (c) J. Wang, G. Sui,
V. P. Mocharla, R. J. Lin, M. E. Phelps, H. C. Kolb and H.-R. Tseng,
Angew. Chem., Int. Ed., 2006, 45, 5276; (d) G. C. Tron, T. Pirali, R. A.
Billington, P. L Canonico, G. Sorba and A. A. Genazzani, Med. Res.
Rev., 2008, 28, 278.
4 (a) H. Nandivada, X. W. Jiang and J. Lahann, Adv. Mater., 2007,
19, 2197; (b) C. F. Ye, G. L. Gard, R. W. Winter, R. G. Syvret, B.
Twamley and J. M. Shreeve, Org. Lett., 2007, 9, 3841; (c) P. Wu, A. K.
Feldman, A. K. Nugent, C. J. Hawker, A. Scheel, B. Voit, J. Pyun,
J. M. J. Fre’chet, K. B. Sharpless and V. V. Fokin, Angew. Chem., Int.
Ed., 2004, 43, 3928; (d) V. Aucagne, K. D. Ha”nni, D. A. Leigh, P. J.
Lusby and D. B. Walker, J. Am. Chem. Soc., 2006, 128, 2186.
5 (a) K. B. Sharpless, V. V. Fokin, L. G. Green and V. V. Rostovtsev,
Angew. Chem., Int. Ed., 2002, 114, 2708; (b) V. V. Rostovtsev, L. G.
Green, V. V. Fokin and K. B. Sharpless, Angew. Chem., Int. Ed., 2002,
41, 2596.
In summary, an environmentally friendly, economical and
efficient method was successfully developed for synthesizing
1,4-disubstituted 1,2,3-triazoles based on low catalyst loadings
of Cu(PPh3)2NO3 complex under solvent-free conditions at
room temperature. This system is broad in scope and highly
efficient even at very low catalyst loadings (down to 50 ppm). In
addition, the catalyst could be applied to the one-pot synthesis
of triazoles from aliphatic bromides, alkyne and sodium azide.
The catalyst Cu(PPh3)2NO3 is cheap and easy-to-prepare. Thus,
the procedure reported in this work is in accordance with the
principles of click chemistry and green chemistry.
Experimental
All reagents were commercially available without further pu-
rification. Flash column chromatography was performed on
silica gel (200–300 mesh) and thin layer chromatography (TLC)
analyses were performed on commercial silica gel plates (60
F254).
General procedures for copper-catalyzed cycloaddition of
organic azides with alkynes to triazoles
Alkyne (1 mmol), azide (1 mmol) and Cu(PPh3)2NO3
(0.005 mmol, 3.28 mg) were added to a flask with a ◦stir bar, and
the mixture was stirred at room temperature (~25 C) without
exclusion of air under solvent-free conditions. When the starting
materials became solid, the reaction time was recorded and the
product was purified. Two methods were used to purify the
product. For the first method, the mixture was diluted with ethyl
acetate and filtered. The filtrate was removed under reduced
pressure to get the crude product, which was further purified
by silica gel chromatography (petroleum ether/ethyl acetate as
eluent) to yield corresponding triazole. For another purification
method, the mixture was diluted with ethyl acetate and filtered.
The filtrate was removed under reduced pressure to get the pure
product. The second method was only applied to the triazoles
whose starting materials are liquid.
6 M. Meldal, C. Christensen and C. W. Tornoe, J. Org. Chem., 2002,
67, 3057.
7 (a) W. S. Brotherton, H. A. Michaels, J. T. Simmons, R. J. Clark,
N. S. Dalal and L. Zhu, Org. Lett., 2009, 11, 4954; (b) K. Kamata, Y.
Nakagawa, K. Yamaguchi and N. Mizuno, J. Am. Chem. Soc., 2008,
130, 15304.
8 (a) S. Die´z-Gonza´lez and S. P. Nolan, Angew. Chem., Int. Ed., 2008,
47, 8881; (b) S. Dıez-Gonzalez, E. D. Stevens and S. P. Nolan, Chem.
Commun., 2008, 4747; (c) B. W. T. Gruijters, M. A. C. Broeren, F. L.
Delft, R. P. Sijbesma, P. H. H. Hermkens and F. P. J. T. Rutjes, Org.
Lett., 2006, 8, 3163.
9 (a) L. D. Pacho´n, J. H. Maarseveen and G. Rothenberg, Adv. Synth.
Catal., 2005, 347, 811; (b) G. Molteni, C. L. Bianchi, G. Marinoni,
N. Santo and A. Ponti, New J. Chem., 2006, 30, 1137; (c) I. S. Park,
M. S. Kwon, Y. Kim, J. S. Lee and J. Park, Org. Lett., 2008, 10, 497.
10 F. Himo, T. Lovell, R. Hilgraf, V. V. Rostovtsev, L. Noodleman, K. B.
Sharpless and V. V. Fokin, J. Am. Chem. Soc., 2005, 127, 210.
11 (a) A. Sarkar, T. Mukherjee and S. Kapoor, J. Phys. Chem. C, 2008,
112, 3334; (b) M-L. Teyssot, A. Chevry, M. Tra¨ıkia, M. El-Ghozzi,
D. Avignant and A. Gautier, Chem.–Eur. J., 2009, 15, 6322; (c) S.
Chassaing, A. S. S. Sido, A. Alix, M. Kumarraja, P. Pale and J.
Sommer, Chem.–Eur. J., 2008, 14, 6713.
Acknowledgements
We are grateful to the project sponsored by the Scientific
Research Foundation for the State Education Ministry (No.
107108) and the Project of National Science Foundation of
P. R. China (No. J0730425).
12 S. o¨zc¸ubukc¸u, E. Ozkal, C. Jimeno and M. A. Perica`s, Org. Lett,
2009, 11, 4860.
13 B. H. Lipshutz and B. R. Taft, Angew. Chem., Int. Ed., 2006, 45,
8235.
14 M. Clark and P. Kiser, Polym. Int., 2009, 58, 1190.
15 S. W. Kwok, J. R. Fotsing, R. J. Fraser, V. O. Rodionov and V. V.
Fokin, Org. Lett., 2010, 12, 4217.
16 C. G. Bates, P. Saejueng, J. M. Murphy and D. Venkataraman, Org.
Lett., 2002, 4, 4727.
Notes and references
1 (a) D. R. Buckle and C. J. M. Rockell, J. Chem. Soc., Perkin Trans.
1, 1982, 627; (b) M. J. Genin, D. A. Allwine, D. J. Anderson, M. R.
Barbachyn, D. E. Emmert, S. A. Garmon, D. R. Graber, K. C. Grega,
This journal is
The Royal Society of Chemistry 2010
Green Chem., 2010, 12, 2120–2123 | 2123
©