C O M M U N I C A T I O N S
downfield in the presence of Cl-, showing that Cl- preferentially
binds inside the cavities of amide linkers via stronger N-H· · · Cl-
H-bonding interaction (SI, Figure S8b-c).
be exploited for the detection of various levels of F- ion concentra-
tions in drinking water, consumer products, as well as bone and
muscle tissues for the early detection and prevention of F- ion
related diseases.
Fluoride ion recognition by NDI receptors was also observed
from 19F NMR spectroscopy. The 19F NMR spectrum of
TBAF ·3H2O in DMSO-d6 shows (Figure 4c) a strong singlet at
-102 ppm corresponding to the F- ion and a weak doublet at
Acknowledgment. S.S. thanks FSU for financial support and
Profs. Naresh Dalal and Igor Alabugin for assistance with EPR
studies and B3LYP/6-31+G** calculations, respectively.
12
-
-142.5 ppm for HF2
.
Titrations of TBAF with 1 caused an
upfield shift of the -102 ppm signal (Figure 4c), which indicates
shielding of F- by the NDI receptor. The disappearance of the F-
signal at 1:1 TBAF/1 may be attributed to an oxidation of F- to F•
as a result of the F-fNDI ET process that produces the NDI•-
radical anion. Although we previously considered a possibility of
C-F bond formation as one of the modes of NDI/F- interaction,
it was not supported by any evidence, including 19F NMR, as no
new signal corresponding to a covalent C-F bond was observed.
The fact that F- induced reductions of NDI to NDI•- and NDI2-
can be fully reversed by oxidizing them back to neutral NDI with
NOBF4 and that the process can be repeated (SI, Figure S6a)
confirm that F- or the resulting F• never reacts with any NDI species
covalently. Whether the transient F• reacts ultimately with solvent
molecules, TBA counterions, homocouples to emanate F2 gas, or
generates HF acid remains unclear after extensive analyses of NDI/
F- mixtures. Nevertheless, F• is produced as a result of NDI/F-
interaction and ET events. Therefore, the lack of precise information
on the fate of F• is inconsequential, as it does not impede the clear
understanding of NDI/F- anion-π interaction that leads to an
unprecedented F-fNDI ET event.
To demonstrate a potential application of NDI/F- interaction,
SR was treated individually with aqueous DMSO extracts of an
anticavity toothpaste containing 0.24% (w/v) NaF and F--free
toothpaste. To our delight, colorless SR turned light orange and
displayed the absorption spectrum of the NDI•- radical anion with
the F- containing toothpaste but did not show any optical changes
with the F--free one (SI, Figure S9).
For the first time, a strong NDI/F- interaction was identified and
fully characterized by experimental results, as well as validated by
computational models (SI, B3LYP/6-31+G**). Supramolecular
NDI/F- (anion-π and CT) interactions promote an unprecedented
electron transfer process from the F- ion to electron deficient NDI
receptors. NDI receptors are highly selective toward F- over other
anions because of better orbital interactions. They display nM range
F- sensitivity in preorganized systems, in which two NDI units
perfectly overlap with each other. The reversibility of the colori-
metric response and reproducibility of NDI receptors render them
excellent reusable F- ion sensors. Therefore, NDI derivatives may
Supporting Information Available: Energy minimized structures;
synthesis and characterizations; additional NMR, EPR, SEC, and ESI-
MS data. This material is available free of charge via the Internet at
References
(1) (a) Quin˜onero, D.; Garau, C.; Rotger, C.; Frontera, A.; Ballester, P.; Costa,
A.; Deya`, P. M. Angew. Chem., Int. Ed. 2002, 41, 3389–3392. (b) Alkorta,
I.; Rozas, I.; Elguero, J. J. Am. Chem. Soc. 2002, 124, 8593–8598. (c)
Rosokha, Y. S.; Lindeman, S. V.; Rosokha, S. V.; Kochi, J. K. Angew.
Chem., Int. Ed. 2004, 43, 4650–4652. (d) Mascal, M. Angew. Chem., Int.
Ed. 2006, 45, 2890–2893. (e) Mascal, M.; Yakovlev, I.; Nikitin, E. B.;
Fettinger, J. C. Angew. Chem., Int. Ed. 2007, 46, 8782–8784. (f) Hay, B. P.;
Bryantsev, V. S. Chem. Commun. 2008, 2417–2428. (g) Schottel, B. L.;
Chifotides, H. T.; Dunbar, K. R. Chem. Soc. ReV. 2008, 37, 68–83. (h)
Berryman, O. B.; Johnson, D. W. Chem. Commun. 2009, 3143–3153. (i)
Arranz, P.; Bianchi, A.; Cuesta, R.; Giorgi, C.; Godino, M. L.; Gutie´rrez,
M. D.; Lo´pez, R.; Santiago, A. Inorg. Chem. 2010, 49, 9321–9332.
(2) (a) Yoo, J.; Kim, M.-S.; Hong, S.-J.; Sessler, J. L.; Lee, C.-H. J. Org.
Chem. 2009, 74, 1065–1069. (b) Chifotides, H. T.; Schottel, B. L.; Dunbar,
K. R. Angew. Chem., Int. Ed. 2010, 49, 7202–7207.
(3) (a) Gorteau, V.; Bollot, G.; Mareda, J.; Perez-Velasco, A.; Matile, S. J. Am.
Chem. Soc. 2006, 128, 14788–14789. (b) Dawson, R. E.; Henning, A.;
Weimann, D. P.; Emery, D.; Ravikumar, V.; Montenegro, J.; Takeuchi,
T.; Gabutti, S.; Mayor, M.; Mareda, J.; Schalley, C. A.; Matile, S. Nat.
Chem. 2010, 2, 533–538.
(4) (a) Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed. 2001, 40, 486–516. (b)
Caltagirone, C.; Gale, P. A. Chem. Soc. ReV. 2009, 38, 520–563.
(5) (a) Lokey, R. S.; Iverson, B. L. Nature 1995, 375, 303–305. (b) Andric,
G.; Boas, J. F.; Bond, A. M.; Fallon, G. D.; Ghiggino, K. P.; Hogan, C. F.;
Hutchison, J. A.; Lee, M. A. -P.; Langford, S. J.; Pilbrow, J. R.; Troup,
G. J.; Woodward, C. P. Aust. J. Chem. 2004, 57, 1011–1019.
(6) Kirk, K. L. Biochemistry of the Halogens and Inorganic Halides; Plenum:
New York, 1991; p 58.
(7) (a) Ayoob, S.; Gupta, A. K. Crit. ReV. EnViron. Sci. Technol. 2006, 36,
433–487. (b) Bassin, E. B.; Wypij, D.; Davis, R. B.; Mittleman, M. A.
Cancer Causes and Control 2006, 17, 421–428.
(8) Kauffman, J. M. J. Am. Phys. Surg. 2005, 10, 38–44.
(9) (a) Wade, C. R.; Broomsgrove, A. E. J.; Aldridge, S.; Gabbaï, F. P. Chem.
ReV. 2010, 110, 3958–3984. (b) Zhao, H.; Gabbaï, F. P. Nat. Chem. 2010,
2, 984–990. (c) Tripier, R.; Platas-Iglesias, C.; Boos, A.; Morfin, J.-F.;
Charbonnie`re, L. Eur. J. Inorg. Chem. 2010, 2735–2745.
(10) (a) Takeuchi, M.; Shioya, T.; Swager, T. M. Angew. Chem., Int. Ed. 2001,
40, 3372–3376. (b) Kang, S. O.; Llinares, J. M.; Powell, D.; VanderVelde,
D.; Bowman-James, K. J. Am. Chem. Soc. 2003, 125, 10152–10153. (c)
Bhosale, S. V.; Bhosale, S. V.; Kalyankar, M. B.; Langford, S. J. Org.
Lett. 2009, 11, 5418–5421. (d) Gale, P. A. Chem. Commun. 2008, 4525–
4540. (e) Cametti, M.; Rissanen, K. Chem. Commun. 2009, 2809–2829.
(11) Hamuro, Y.; Geib, S. J.; Hamilton, A. D. J. Am. Chem. Soc. 1997, 119,
10587–10593.
(12) Sun, H.; DiMagno, S. G. J. Am. Chem. Soc. 2005, 127, 2050–2051.
JA107382X
9
J. AM. CHEM. SOC. VOL. 132, NO. 50, 2010 17677