G Model
CRAS2C-3707; No. of Pages 6
2
R. Ghorbani-Vaghei et al. / C. R. Chimie xxx (2013) xxx–xxx
dichloride (2 mL) was added, and the catalyst was
recovered), washed with EtOH and dried and purified by
recrystallization from ethanol.
28 (49). Anal. Calcd. for C21H20N4: C, 76.80; H, 6.14; N,
17.06%. Found: C, 76.56; H, 6.14; N, 17.08%.
2.2.4. N-((2,6-dichlorophenyl)(1H-indol-3-yl)methyl)2-
aminopyrimidine (Table 2, 4h)
2.2. Physical and spectroscopic data
Mp: 161–162 8C Yield: 83%. IR (KBr): 3428, 3181, 1586,
2.2.1. N-((1H-indol-3-yl)(p-tolyl)methyl) 2-amino-4,6-
dimethylpyrimidine (Table 2, 4b)
Mp: 154–156 8C. Yield: 93%. IR (KBr): 3427, 1631, 1587,
1568, 1511, 1456, 1384, 1340, 1121, 743, 802, 743,
1567, 1509, 1485, 1455, 1340, 1121, 1070, 1009, 804 cmÀ1
.
1H-NMR (FT-90 MHz, DMSO-d6):
6.88–8.30 (12H, m), 11.02 (1H, s). 13C-NMR (FT-400 MHz,
DMSO-d6): (ppm) 49.7, 105.6, 111.5, 112.2, 112.5, 118.9,
d (ppm) 6.66 (1H, s),
d
663 cmÀ1
.
1H-NMR (FT-400 MHz, DMSO-d6):
d
(ppm)
2.20 (9H, s), 6.36 (1H, s), 6.60 (1H, s), 6.62–7.63 (10H,
m), 10.89 (1H, s). 13C-NMR (FT-400 MHz, DMSO-d6):
119.3, 121.7, 124.1, 124.3, 126.3, 129.9, 137.0, 137.3, 158.5,
161.6, 162.5. MS, m/z: 368 (M+, 2), 238 (5), 176 (11), 175
(71), 94 (37), 28 (100), 26 (27). Anal. Calcd. for
d
(ppm) 21.1, 24.1, 51.1, 109.3, 111.9, 117.9, 118.9, 119.4,
121.5, 123.5, 123.6, 126.5, 127.7, 129.0, 135.8, 136.7, 136.9,
141.6, 162.0, 167.2. MS, m/z: 342 (M+, 27), 220 (73), 117
(50), 42 (100), 28 (40). Anal. Calcd. for C22H22N4: C, 77.16;
H, 6.48; N, 16.36%. Found: C, 77.04; H, 6.36; N, 16.35%.
C21H18Cl2N4: C, 61.80; H, 3.82; N, 15.17%. Found: C,
54.73; H, 3.38; N, 25.23%.
2.2.5. N-((1H-indol-3-yl)(4-nitrophenyl)methyl)2-
aminopyrimidine (Table 2, 4i)
Mp 184–185 8C. Yield: 76%. IR (KBr): 3415, 3225, 1590,
1515, 1449, 1414, 1344, 1252, 1106, 1012, 870, 802, 739,
2.2.2. N-((2,3-dichlorophenyl)(1H-indol-3-yl)methyl)2-
amino-4,6-dimethylpyrimidine (Table 2, 4c)
Mp: 209–211 8C. Yield: 87%. IR (KBr): 3424, 1588, 1563,
1507, 1451,1341, 1194, 1123, 830, 793, 740, 580 cmÀ1. 1H-
605, 425 cmÀ1. 1H-NMR (FT-400 MHz, DMSO-d6):
d
(ppm)
6.62 (1H, s), 6.64 (1H, s), 6.68–8.32 (12H, m), 10.05 (1H, s).
13C-NMR (FT-400 MHz, DMSO-d6):
(ppm) 51.4, 111.2,
d
NMR (FT-400 MHz, DMSO-d6):
(1H, s), 6.41 (1H, s), 6.79–7.79 (9H, m), 10.95 (1H, s). 13C-
NMR (FT-400 MHz, DMSO-d6): (ppm) 24.0, 59.6, 109.8,
112.1, 115.7, 119.1, 119.2, 121.8, 124.1, 124.3, 126.6, 127.7,
128.4, 129.1, 130.9, 131.9, 136.8, 136.9, 144.9, 161.7, 167.3.
MS, m/z: 396 (M+, 12), 361 (58), 238 (50), 173 (100), 29
(38).
d
(ppm) 2.20 (6H, s), 6.40
112.1, 116.1, 119.1, 119.3, 121.9, 123.9, 124.1, 124.3, 126.3,
128.7, 136.8, 146.7, 152.3, 158.5, 161.9. MS, m/z: 345 (M+,
4), 298 (2), 204 (10), 117 (39), 28 (100), 27 (46). Anal. Calcd.
for C19H15N5O2: C, 66.08; H, 4.38; N, 20.28%. Found: C,
65.91; H, 4.24; N, 20.18%.
d
3. Results and discussion
2.2.3. N-((1H-indol-3-yl)(phenyl)methyl)2-amino-4,6-
dimethylpyrimidine (Table 2, 4d)
Mp: 200–201 8C. Yield: 80%. IR (KBr): 3426, 3240, 1586,
1567, 1508, 1489, 1455, 1340, 1121, 1013, 832, 806, 744,
In continuation of our interest in the application of
TBBDA and [PBBS] [16] in organic synthesis [19–31], we
wish to report here a facile and improved protocol for the
preparation of new 3-substituted indoles from heteroar-
ylamines, aromatic aldehydes, and indole in the presence
of TBBDA and PBBS as catalysts under solid-state condi-
tions at room temperature (Scheme 1).
619, 479 cmÀ1. 1H-NMR (FT-400 MHz, DMSO-d6):
d
(ppm)
2.21 (6H, s), 6.38 (1H, s), 6.60 (1H, s), 6.62–7.76 (10H, m),
10.95 (1H, s). 13C-NMR (FT-400 MHz, DMSO-d6):
(ppm)
d
23.9, 50.9, 109.6, 112.0, 117.1, 119.0, 119.3, 119.9, 121.6,
123.8, 123.8, 126.3, 130.0, 131.3, 136.9, 144.1, 161.9, 167.2.
MS, m/z: 328 (M+, 18), 251 (5), 206 (38), 118 (50), 42 (100),
The advantages of TBBDA and PBBS are as follows:
ꢀ
the preparation of TBBDA and PBBS is easy;
Scheme 1. Three-component synthesis of 3-substituted indoles.
Please cite this article in press as: Ghorbani-Vaghei R, et al. Solid-state synthesis of novel 3-substituted indoles. C. R.