Y. Zhou et al. / Tetrahedron Letters 51 (2010) 6136–6138
6137
Table 1
Reaction of zirconacyclopentene with PhPCl2
Entry
1
Zirconacyclopentene
Phospholene
Yielda (%)
Et
Et
Et
S
Et
72
80
Cp2Zr
P
Ph
1a
3a
nPr
nPr
S
nPr
nPr
2
Cp2Zr
P
Ph
1b
3b
nBu
nBu
S
nBu
nBu
3
4
5
6
7
8
75
64
P
Cp2Zr
Ph
3c
1c
Ph
Ph
Ph
S
Ph
Cp2Zr
P
Ph
1d
3d
Figure 1. Single-crystal structure of 3i.
Ph
Ph
S
Me
Me
61b
62b
58c
52d
Cp2Zr
P
Ph
R
R
1e
3e
R
R
R
R
Mo(CO)6
50oC, 24h
Ph
Ph
Et
Ph
S
PhPCl2
THF, rt, 1h
P
Ph
P
ZrCp2
Et
Mo(CO)5
P
Cp2Zr
1
2
4
Ph
3f
1f
4a
: R = Et, 62%
TMS
TMS
S
: R = nPr, 54%
nBu
nBu
4b
P
Cp2Zr
Ph
Scheme 2.
1g
3g
Ph
Ph
S
Acknowledgments
P
Cp2Zr
Ph
1h
3h
This work was supported by the National Natural Science Foun-
dation of China(21032004, 20972085, and 20872076), and by Spe-
cialized Research Fund for the Doctoral Program of Higher
Education (200800030072).
Ph
Ph
S
9
P
61
Cp2Zr
Ph
1i
3i
3j
Supplementary data
S
10
62e
P
Cp2Zr
Supplementary data associated with this article can be found, in
Ph
1j
Ph
Ph
References and notes
a
Isolated yields.
b
A mixture of two regioisomers in a ratio of 8:1, the ratio of two isomers was
1. (a) Kollár, L.; Keglevich, G. Chem. Rev. 2010, 110, 4257; (b) Breit, B.; Fuchs, E.
Chem. Commun. 2004, 694; (c) Baber, R. A.; Clarke, M. L.; Heslop, K.; Marr, A. C.;
Orpen, A. G.; Pringle, P. G.; Ward, A.; Zambrano-Williams, D. E. Dalton Trans.
2005, 1079.
detected by GC.
c
A mixture of two regioisomers in a ratio of 25:1.
A mixture of two regioisomers in a ratio of 10:1.
d
e
A mixture of two stereoisomers in a ratio of 1:1.
}
2. (a) Keglevich, G.; Forintos, H.; Keserü, G. M.; Hegedüs, L.; Toke, L. Tetrahedron
2000, 56, 4823; (b) Kovács, J.; Szabó, N. B.; Nagy, Z.; Ludányi, K.; Keglevich, G.
Heteroatom Chem. 2005, 16, 320; (c) Novák, T.; Deme, J.; Ludányi, K.; Keglevich,
G. Heteroatom Chem. 2008, 19, 28; (d) Reddy, V. K.; Onogawa, J.-I.; Rao, L. N.;
Oshikawa, T.; Takahashi, M.; Yamashita, M. J. Heterocycl. Chem. 2002, 39, 69; (e)
Yamashita, M.; Reddy, V. K.; Rao, L. N.; Haritha, B.; Maeda, M.; Suzuki, K.;
Totsuka, H.; Takahashi, M.; Oshikawa, T. Tetrahedron Lett. 2003, 44, 2339; (f)
Yamada, M.; Yamashita, M.; Suyama, T.; Yamashita, J.; Asai, K.; Niimi, T.; Ozaki,
N.; Fujie, M.; Maddali, K.; Nakamura, S.; Ohnishi, K. Bioorg. Med. Chem. Lett. 2010,
20, 5943.
with PhPCl2 to afford benzophospholene 3j in 62% yield (entry 10).
It is noteworthy that in this case two stereoisomers were observed
in 1:1 ratio.
The phospholenes, as the most conventional ligands have been
widely studied and employed in homogeneous catalytic reac-
tions.1,3 Addition of PPhCl2 to zirconacyclopentene, followed by
treatment with Mo(CO)6, led to the phospholene complex 4 in good
yield (Scheme 2).
We conclude that the reaction of zirconacyclopentenes with
dichlorophenylphosphine gives 2-phospholenes. This reaction rep-
resents a convenient pathway to substituted 2-phospholenes in
one-pot from an alkyne, alkene, dichlorophosphine, and zircono-
cene compound.
3. (a) Leca, F.; Réau, R. J. Catal. 2006, 238, 425; (b) Novák, T.; Schindler, J.; Ujj, V.;
Czugler, M.; Fogassy, E.; Keglevich, G. Tetrahedron: Asymmetry 2006, 17, 2599;
(c) Novák, T.; Ujj, V.; Schindler, J.; Czugler, M.; Kubinyi, M.; Mayer, Zs. A.;
Fogassy, E.; Keglevich, G. Tetrahedron: Asymmetry 2007, 18, 2965; (d) Ujj, V.;
Schindler, J.; Novák, T.; Czugler, M.; Fogassy, E.; Keglevich, G. Tetrahedron:
Asymmetry 2008, 19, 1973; (e) Xie, J.-H.; Zhou, Q.-L. Acc. Chem. Res. 2008, 41,
581; (f) Klosin, J.; Landis, C. R. Acc. Chem. Res. 2007, 40, 1251; (g) Clark, T. P.;
Landis, C. R. Tetrahedron: Asymmetry 2004, 15, 2123.
4. (a) Quin, L.; Mathewes, D. J. Org. Chem. 1964, 29, 836; (b) Quin, L. D.; Gratz, J. P.;
Barket, T. P. J. Org. Chem. 1968, 33, 1034; (c) McCormack, W. B. Org. Synth. 1973,
5, 787; (d) Sølling, T. I.; Wild, S. B.; Radom, L. J. Organomet. Chem. 1999, 580, 320;