A R T I C L E S
Kakiuchi et al.
aromatic ketone/olefin coupling has also been studied by many
researchers, and ruthenium catalysts other than complex 1 have
been found for C-H/olefin coupling. In addition, several
suggestions have been provided for the catalytic intermediates
of ruthenium-catalyzed coupling.
In an early investigation, transfer of the hydride ligands of
RuH2(CO)(PPh3)3 (1) to an olefin gave a catalytically active
species, and it was proposed that the dehydrogenation of 1 is
the key step for the generation of an active catalyst.2c Concur-
rently, Weber and co-workers also observed partial hydrogena-
tion of olefins in the application of C-H/olefin coupling to step-
growth polymerization and suggested that the reduction of the
olefin may be involved in the formation of catalytically active
species.They also found that treatment of 1 with a stoichiometric
amount of styrene (2) prior to step-growth polymerization
provided a catalytically active species. In both studies, coordi-
Figure 1. Structures of ortho-ruthenated intermediates.
natively unsaturated ruthenium(0) species were considered to
be the active catalyst, but the structure was not experimentally
determined.
NMR studies carried out by Hiraki and co-workers suggested
that treatment of 1 with 2 and 3′-trifluoromethylacetophenone
(3) generates several ruthenium complexes involving P,P′-cis-
C,H-cis-Ru(C6H3(CF3)C(O)CH3)(H)(CO)(PPh3)2 (4a), P,P′-
trans-C,H-cis-Ru(C6H3(CF3)C(O)CH3)H(CO)(PPh3)2 (4b), and
P,P′-trans-C,H-trans-Ru(C6H3(CF3)C(O)CH3)H(CO)(PPh3)2 (4c)
(Figure 1).13 The structures of these complexes were not
determined solely by the NMR analyses, but were proposed
(2) Selected results from our group: (a) Murai, S.; Kakiuchi, F.; Sekine,
S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Nature 1993,
366, 529–531. (b) Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.;
Kamatani, A.; Sonoda, M.; Chatani, N. Pure Appl. Chem. 1994, 66,
1527–1534. (c) Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.;
Sonoda, M.; Chatani, N.; Murai, S. Bull. Chem. Soc. Jpn. 1995, 68,
62–83. (d) Kakiuchi, F.; Yamauchi, M.; Chatani, N.; Murai, S. Chem.
Lett. 1996, 111–112. (e) Sonoda, M.; Kakiuchi, F.; Chatani, N.; Murai,
S. Bull. Chem. Soc. Jpn. 1997, 70, 3117–3128. (f) Fujii, N.; Kakiuchi,
F.; Yamada, A.; Chatani, N.; Murai, S. Bull. Chem. Soc. Jpn. 1998,
71, 285–298. (g) Kakiuchi, F.; Le Gendre, P.; Yamada, A.; Ohtaki,
H. Tetrahedron: Asymmetry 2000, 11, 2647–2651. (h) Kakiuchi, F.;
Ohtaki, H.; Sonoda, M.; Chatani, N.; Murai, S. Chem. Lett. 2001, 918–
919. (i) Chatani, N.; Asaumi, T.; Yorimitsu, S.; Ikeda, T.; Kakiuchi,
F.; Murai, S. J. Am. Chem. Soc. 2001, 123, 10935–10941. (j) Kakiuchi,
F.; Murai, S. Acc. Chem. Res. 2002, 35, 826–834.
(6) (a) Hong, P.; Cho, B.-R.; Yamazaki, H. Chem. Lett. 1979, 8, 339–
342. (b) Hong, P.; Cho, B.-R.; Yamazaki, H. Chem. Lett. 1980, 9,
507–510. (c) Yamazaki, H.; Hong, P. J. Mol. Catal. 1983, 21, 133–
150. (d) Halbritter, G.; Knoch, F.; Wolski, A.; Kisch, H. Angew. Chem.,
Int. Ed. Engl. 1994, 33, 1603–1605. (e) Kakiuchi, F.; Yamamoto, Y.;
Chatani, N.; Murai, S. Chem. Lett. 1995, 681–682. (f) Du¨rr, U.; Kisch,
H. Synlett 1997, 1335–1341. (g) Londergan, T. M.; You, Y.;
Thompson, M. E.; Weber, W. P. Macromolecules 1998, 31, 2784–
2788. (h) Satoh, T.; Nishinaka, Y.; Miura, M.; Nomura, M. Chem.
Lett. 1999, 615–616. (i) Harris, P. W. R.; Rickard, C. E. F.; Woodgate,
P. D. J. Organomet. Chem. 1999, 589, 168–179. (j) Sakaguchi, S.;
Kubo, T.; Ishii, Y. Angew. Chem., Int. Ed. 2001, 40, 2534–2536. (k)
Lim, Y.-G.; Lee, K.-H.; Koo, B. T.; Kang, J.-B. Tetrahedron Lett.
2001, 42, 7609–7612. (l) Kakiuchi, K.; Uetsuhara, T.; Tanaka, Y.;
Chatani, N.; Murai, S. J. Mol. Catal. A 2002, 182-183, 511–514.
(m) Lim, S.-G.; Lee, J. H.; Moon, C. W.; Hong, J.-B.; Jun, C.-H.
Org. Lett. 2003, 5, 2759–2761. (n) Tsukada, N.; Mitsuboshi, T.;
Setoguchi, H.; Inoue, Y. J. Am. Chem. Soc. 2003, 125, 12102–12103.
(o) Kuninobu, Y.; Kawata, A.; Takai, K. J. Am. Chem. Soc. 2005,
127, 13498–13499. (p) Kuninobu, Y.; Tokunaga, Y.; Kawata, A.;
Takai, K. J. Am. Chem. Soc. 2006, 128, 202–209. (q) Ueura, K.; Satoh,
T.; Miura, M. Org. Lett. 2007, 9, 1407–1409. (r) Ueura, K.; Satoh,
T.; Miura, M. J. Org. Chem. 2007, 72, 5362–5367. (s) Tsukada, N.;
Murata, K.; Inoue, Y. Tetrahedron Lett. 2005, 46, 7515–7517. (t)
Nakao, Y.; Yada, A.; Ebata, S.; Hiyama, T. J. Am. Chem. Soc. 2007,
129, 2428–2429.
(3) (a) Lim, Y.-G.; Kim, Y. H.; Kang, J.-B. J. Chem. Soc., Chem. Commun.
1994, 2267-2268. (b) Guo, H.; Wang, G.; Tapsak, M. A.; Weber,
W. P. Macromolecules 1995, 28, 5686-5687. (c) Trost, B. M.; Imi,
K.; Davies, I. W. J. Am. Chem. Soc. 1995, 117, 5371-5372. (d) Harris,
P. W. R.; Woodgate, P. D. J. Organomet. Chem. 1996, 506, 339-
341. (e) Lim, Y.-G.; Kang, J.-B.; Kim, Y. H. Chem. Commun. 1996,
585-586. (f) Grigg, R.; Savic, V. Tetrahedron Lett. 1997, 38, 5737-
5740. (g) Lu, P.; Paulasaari, J. K.; Weber, W. P. Organometallics
1998, 17, 584-588. (h) Lenges, C. P.; Brookhart, M. J. Am. Chem.
Soc. 1999, 121, 6616-6623. (i) Tan, K. L.; Bergman, R. G.; Ellman,
J. A. J. Am. Chem. Soc. 2001, 123, 2685-2686. (j) Thalji, R. K.;
Ahrendt, K. A.; Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc.
2001, 123, 9692-9693. (k) DeBoef, B.; Pastine, S. J.; Sames, D. J. Am.
Chem. Soc. 2004, 126, 6556-6557. (l) Lim, S.-G.; Ahn, J.-A.; Jun,
C.-H. Org. Lett. 2004, 6, 4687-4690. (m) Martinez, R.; Chevalier,
R.; Darses, S.; Genet, J.-P. Angew. Chem., Int. Ed. 2006, 45, 8232-
8235. (n) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. J. Am. Chem.
Soc. 2007, 129, 5332-5333. (o) Hwang, S. J.; Cho, S. H.; Chang, S.
J. Am. Chem. Soc. 2008, 130, 16158-16159. (p) Nakao, Y.; Kashihara,
N.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. 2008, 130, 16170-
16171. (q) Kuninobu, Y.; Nishina, Y.; Okaguchi, K.; Shouho, M.;
Takai, K. Bull. Chem. Soc. Jpn. 2008, 81, 1393-1401. (r) Kozhushkov,
S.; Yufit, D. S.; Ackermann, L. Org. Lett. 2008, 10, 3409-3412. (s)
Tsuchikama, K.; Kasagawa, M.; Hashimoto, Y.-K.; Endo, K.; Shibata,
T. J. Organomet. Chem. 2008, 693, 3939-3942. (t) Martinez, R.;
Simon, M.-O.; Chevalier, R.; Pautigny, C.; Genet, J.-P.; Darses, S.
J. Am. Chem. Soc. 2009, 131, 7887-7895. (u) Mukai, T.; Hirano, K.;
Satoh, T.; Miura, M. J. Org. Chem. 2009, 74, 6410-6413. (v) Nakao,
Y.; Idei, H.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. 2009,
131, 15996-15997. (w) Nakazono, S.; Imazaki, Y.; Yoo, H.; Yang,
J.; Sasamori, T.; Tokitoh, N.; Ce´dric, T.; Kageyama, H.; Kim, D.;
Shinokubo, H.; Osuka, A. Chem.-Eur. J. 2009, 15, 7530-7533. (x)
Yi, C. S.; Lee, D. W. Organometallics 2009, 28, 4266-4268. (y)
Bartoszewicz, A.; Mart´ın-Matute, B. Org. Lett. 2009, 11, 1749-1752.
(z) Simon, M.-O.; Martinez, R.; Genet, J.-P.; Darses, S. J. Org. Chem.
2010, 75, 208-210.
(7) (a) Hong, P.; Yamazaki, H. Chem. Lett. 1979, 8, 1335–1336. (b) Lin,
Y.; Ma, D.; Lu, X. Tetrahedron Lett. 1987, 28, 3249–3252. (c)
Kakiuchi, F.; Sato, T.; Yamauchi, M.; Chatani, N.; Murai, S. Chem.
Lett. 1999, 28, 19–20. (d) Ueno, S; Chatani, N.; Kakiuchi, F. J. Org.
Chem. 2007, 72, 3600–3602. (e) Matsuura, Y.; Tamura, M.; Kochi,
T.; Sato, M.; Chatani, N.; Kakiuchi, F. J. Am. Chem. Soc. 2007, 129,
9858–9859. (f) Ueno, S.; Kochi, T.; Chatani, N.; Kakiuchi, F. Org.
Lett. 2009, 11, 855–858.
(8) (a) Moore, E. J.; Pretzer, W. R.; O’Connell, T. J.; Harris, J.; LaBounty,
L.; Chou, L.; Grimmer, S. S. J. Am. Chem. Soc. 1992, 114, 5888–
5890. (b) Chatani, N.; Fukuyama, T.; Kakiuchi, F.; Murai, S. J. Am.
Chem. Soc. 1996, 118, 493–494. (c) Chatani, N.; Ie, Y.; Kakiuchi, F.;
Murai, S. J. Org. Chem. 1997, 62, 2604–2610. (d) Chatani, N.; Ishii,
Y.; Ie, Y.; Kakiuchi, F.; Murai, S. J. Org. Chem. 1998, 63, 5129–
5136. (e) Chatani, N.; Asaumi, T.; Ikeda, T.; Yorimitsu, S.; Ishii, Y.;
Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. 2000, 122, 12882–12883.
(f) Szewczyk, J. W.; Zuckerman, R. L.; Bergman, R. G.; Ellman, J. A.
Angew. Chem., Int. Ed. 2001, 40, 216–219. (g) Asaumi, T.; Matsuo,
T.; Fukuyama, T.; Ie, Y.; Kakiuchi, F.; Chatani, N. J. Org. Chem.
2004, 69, 4433–4440. (h) Imoto, S.; Uemura, T.; Kakiuchi, F.; Chatani,
N. Synlett 2007, 170–172. (i) Inoue, S.; Shiota, H.; Fukumoto, Y.
J. Am. Chem. Soc. 2009, 131, 6898–6899.
(4) (a) Guari, Y.; Sabo-Etienne, S.; Chaudret, B. J. Am. Chem. Soc. 1998,
120, 4228–4229. (b) Guari, Y.; Castellanos, A.; Sabo-Etienne, S.;
Chaudret, B. J. Mol. Catal. A: Chem. 2004, 212, 77–82.
(9) (a) Kakiuchi, F.; Kan, S.; Igi, K.; Chatani, N.; Murai, S. J. Am. Chem.
Soc. 2003, 125, 1698–1699. (b) Kakiuchi, F.; Matsuura, Y.; Kan, S.;
Chatani, N. J. Am. Chem. Soc. 2005, 127, 5936–5945. (c) Ueura, K.;
Satoh, T.; Miura, M. Org. Lett. 2005, 7, 2229–2231. (d) Miyamura,
S.; Tsurugi, H.; Satoh, T.; Miura, M. J. Organomet. Chem. 2008, 693,
2438–2442.
(5) (a) Busch, S.; Leitner, W. AdV. Synth. Catal. 2001, 343, 192–195. (b)
Busch, S.; Leitner, W. Chem. Commun. 1999, 2305–2306. (c) Buskens,
P.; Giunta, D.; Leitner, W. Inorg. Chim. Acta 2004, 357, 1969–1974.
9
17742 J. AM. CHEM. SOC. VOL. 132, NO. 50, 2010