Laureates: awards and Honors, sCs FaLL Meeting 2011
CHIMIA 2012, 66, No. 4 207
Allene Chemistry’, Eds. N. Krause, A. S. K.
Hashmi, Wiley-VCH, Weinheim, 2004.
[2] a) K. M. Brummond, J. E. Deforrest, Synthesis
2007, 795; b) S. Yu, S. Ma Chem. Commun.
2011, 47, 5384.
[3] K. Pranz, J. Mulzer, Chem. Rev. 2010, 110,
Scheme 5. Frag-
mentation induced by
nitrogen containing
nucleophiles.
2
1
OTf
R
R
1
O
R
Nu
H
3 O
R
3
R
2
•
R
K2CO3,DMA, 50°C
Nu
3
3
R
R
9
1
3741.
Me
O
Allyl
Allyl
O
O
[4] A. Eschenmoser, A. Frey, Helv. Chim. Acta
1952, 35, 1660.
[5] a) S. Kamijo, G. B. Dudley, J. Am. Chem. Soc.
•
•
Bn
•
Allyl
Allyl
Allyl
Pr
N
NHBn
NHPh
9
9 % 9
b
96 %
O
84%
9
9
a
c
2005, 127, 5028; b) S. Kamijo, G. B. Dudley,
Org. Lett. 2006, 8, 175; c) D. M. Jones, S,
Kamijo, G. B. Dudley, Synlett 2006, 936;
d) S. Kamijo, G. B. Dudley, J. Am. Chem.
Soc. 2006, 128, 6499; e) S. Kamijo, G. B.
Dudley, Tetrahedron Lett. 2006, 47, 5629; f) J.
Allyl
Pr
Pr
O
O
O
•
•
•
Pr
Ph
N 2
H
N
HTs
N
OH
91 %
75% 9f
94 % 9
d
9e
Tummatorn, G. B. Dudley, J. Am. Chem. Soc.
2008, 130, 5050; g) D. M. Jones, M. P. Lisboa,
S. Kamijo, G. B. Dudley, J. Org. Chem. 2010,
75, 3260.
Scheme 6. Oxidative
radical cyclization of
allenic hydroxamic
acid 9f.
Ph
N
Pr
O
O
O
O
Pr
Pr
lauroylperoxide, O (1 atm)
2
•
Pr
Pr
Ph
[6] R. V. Kolakowski, M. Manpadi, Y. Zhang, T. J.
N
O
O
H
AcOH, 60°C
Emge, L. J. Williams, J. Am. Chem. Soc. 2009,
131, 12910.
[7] a) T. Seiser, O. A. Roth, N. Cramer, Angew.
9f
H
O
13
52 %
R
Chem. Int. Ed. 2009, 48, 6320; M. Albicker, N.
Cramer, Angew. Chem. Int. Ed. 2009, 48, 9139;
D. N. Tran, N. Cramer, Angew. Chem. Int. Ed.
2010, 49, 8181; D. N. Tran, N. Cramer, Angew.
Chem. Int. Ed. 2011, 50, 11098; T. Saget, S. J.
Lemouzy, N. Cramer, Angew. Chem. Int. Ed.
2012, 51, 2238.
Ph
Ph
Pr
O
O
N
N
O
O
Pr
Pr
O
Pr
Pr
2
•
Ph
N
O
10
O
11
OH
12
[8] T. Saget, N. Cramer, Angew. Chem. Int. Ed.
2010, 49, 8962.
[9] a) M. S. Maier, D. I. G. Marimon, C. A. Stortz,
Scheme 7. Domino
reaction consisting of
the fragmentation and
a Curtius rearrange-
ment.
Pr
Pr
M. T. Adler, J. Nat. Prod. 1999, 62, 1565; b)
S.-C. Lee, G. D. Brown, J. Nat. Prod. 1998, 61,
29; c) R. R. A. Kitson, A. Millemaggi, R. J. K.
Taylor, Angew. Chem. Int. Ed. 2009, 48, 9426.
1
R
•
3 O
3
R
R
2
•
14
R
2
1
N
R
R
3
O
OTf
H O
2
NaN
NH
3
-N
[10] X. Jiang, C. Fu, S. Ma, Chem. Eur. J. 2008, 14,
9656.
[11] R. D. Walkup, L. Guan, M. D. Mosher, S. W.
Kim, Y. S. Kim, Synlett 1993, 88.
[12] V. A. Schmidt, E. J. Alexanian, Angew. Chem.
Int. Ed. 2010, 49, 4491.
2
O
1
DMA, 100°C
R
N
H
3
3
3
3
R
R
R
R
99 %
2
•
R
N
•
1
15
O
•
16
Pr
Pr
R
O
H, RR1N
or R
H
S
H
O
O
O
HN
OBn
HN
OEt
HN
OBn
•
•
•
•
Pr
Pr
Me
17c 68 %
17b 80 %
17a 77 %
Pr
Pr
Bn
O
O
O
HN NMe
HN NHBn
HN
SPh
2
•
Pr
•
Pr
Pr
17e
17f 38 %
Pr
17d 67 %
69%
Pr
Pr
at 100 °C in DMF resulted in full conver- and well suited to be coupled to one-pot
sion to isocyanate 15a which was isolated or domino processes. In this case, one
as the symmetrical urea 16 upon aqueous can benefit from the inherent reactivity of
work-up. When alcohols are added to the allenes which allow transformations of
reaction mixture from the beginning, iso- these intermediates into a wide range of
cyanates 15 are directly trapped to the cor- synthetically useful compounds.
responding carbamates 17a,c. A similar
strategy can be used with amines or thiols
Acknowledgments
leading to ureas 17d,e and thiocarbamate
17f. In these cases, the nucleophile has to
be added after completion of the fragmen-
tation step.
In conclusion, we have reported a
practical and operationally simple syn-
thesis of functionalized allenes from read-
T. S. would like to cordially thank Metrohm
and the Swiss Chemical Society for the SCS-
Metrohm award. We thank the ETH Zurich
(ETH-16 09-3) and EPF Lausanne for funding.
Received: January 13, 2012
ily available vinyl triflate precursors. The
[1] a) ‘The Chemisty of Allenes’, Ed. S. R. Landor,
Academic Press, London, 1982; b) ‘Modern
employed reaction conditions are mild