10.1002/anie.201706915
Angewandte Chemie International Edition
COMMUNICATION
Lett. 2004, 6, 1151; b) X. Zhang, Y. Zhang, J. Huang, R. P. Hsung, K. C.
M. Kurtz, J. Oppenheimer, M. E. Petersen, I. K. Sagamanova, L. Shen,
M. R. Tracey, J. Org. Chem. 2006, 71, 4170.
C–N bond formation. Circumstantial evidence for the formation
of 21 was found in the isolation of byproduct diyndiamide 22 in
reactions with hindered amide coupling partners. Alternative
routes, such as amido-cupration of 19 followed by β-elimination
of bromide, or direct amination of the dibromoenamide (23)
followed by elimination of HBr, cannot be ruled out at this stage.
In conclusion, we report the first route to yndiamides – novel,
bench-stable alkyne derivativ es that are readily prepared from
simple precursors. Yndiamides are highly versatile, and provide
access to a range of nitrogen-substituted frameworks using
transition metal- or acid-catalyzed processes. Their unique
reactivity profile, which both mirrors and contrasts with that of
ynamides, suggests significant potential for future applications.
[7]
[8]
Y. Yang, X. Zhang, Y. Liang, Tetrahedron Lett. 2012, 53, 6557.
a) K. A. DeKorver, M. C. Walton, T. D. North, R. P. Hsung, Org. Lett.
2011, 13, 4862; b) K. A. DeKorver, X.-N. Wang, M. C. Walton, R. P.
Hsung, Org. Lett. 2012, 14, 1768; c) X.-N. Wang, G. N. Winston-
McPherson, M. C. Walton, Y. Zhang, R. P. Hsung, K. A. DeKorver, J.
Org. Chem. 2013, 78, 6233.
[9]
See the Supporting Information for full details.
[10] Low temperature single crystal diffraction data were collected using a
Nonius Kappa CCD or a (Rigaku) Oxford Diffraction SuperNova A
diffractometer. Raw frame data were collected and reduced using
DENZO-SMN [Z. Otwinowski, W. Minor, Methods Enzymol. 1997, 276,
307] or CrysAlisPro, solved using SuperFlip [L. Palatinus, G. Chapuis, J.
Appl. Cryst. 2007, 40, 786] or SIR92, and refined using CRYSTALS [P.
W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, D. J. Watkin, J.
Appl. Cryst. 2003, 36, 1487; R. I. Cooper, A. L. Thompson, D. J. Watkin,
J. Appl. Cryst. 2010, 43, 1100]. Data for very small crystals were
collected using I19-1 at Diamond Light Source [H. Nowell, S. A. Barnett,
K. E. Christensen, S. J. Teat, D. R. Allan, J. Synchrotron Rad. 2012, 19,
435]; see the Supporting Information (CIF). Crystallographic data have
been deposited with the Cambridge Crystallographic Data Centre
(CCDC 1022576-1022578 and CCDC 1571980-1572017).
Acknowledgements
SJM is supported by the EPSRC Centre for Doctoral Training in
Synthesis for Biology and Medicine (EP/L015838/1). EAA thanks
the EPSRC (EP/M019195/1). AM thanks the Royal Thai
Government and the DPST project for a studentship. We thank
Diamond Light Source for beamtime on I19-1 (MT13639), and
Niels Marien for assistance with DFT calculations.
[11] S. Ohashi, S. Inagaki, Tetrahedron 2001, 57, 5361.
[12] a) A. Mekareeya, P. R. Walker, A. Couce-Rios, C. D. Campbell, A.
Steven, R. S. Paton, E. A. Anderson, J. Am. Chem. Soc. 2017, 139,
10104; b) P. R. Walker, C. D. Campbell, A. Suleman, G. Carr, E. A.
Anderson, Angew. Chem. Int. Ed. 2013, 52, 9139; c) B. M. Trost, G. J.
Tanoury, M. Lautens, C. Chan, D. T. Macpherson, J. Am. Chem. Soc.
1994, 116, 4255.
Keywords: copper catalysis • cycloisomerization • heterocycles
• yndiamide • ynamide
[13] 1,3- and 1,5-dienes were observed as minor products in Entries 2-4,
which is consistent with related ynamide processes, see Ref. 11a.
[14] a) R. N. Straker, Q. Peng, A. Mekareeya, R. S. Paton, E. A. Anderson,
Nat. Commun. 2016, 7, 10109; b) P. A. Wender, T. J. Williams, Angew.
Chem. Int. Ed. 2002, 41, 4550.
[1]
a) A. Siva Reddy, K. C. Kumara Swamy, Angew. Chem. Int. Ed. 2017,
56, 6984; b) B. Zhou, L. Li, X.-Q. Zhu, J.-Z. Yan, Y.-L. Guo, L.-W. Ye,
Angew. Chem. Int. Ed. 2017, 56, 4015; c) D. V. Patil, S. W. Kim, Q. H.
Nguyen, H. Kim, S. Wang, T. Hoang, S. Shin, Angew. Chem. Int. Ed.
2017, 56, 3670; d) W.-B. Shen, X.-Y. Xiao, Q. Sun, B. Zhou, X.-Q. Zhu,
J.-Z. Yan, X. Lu, L.-W. Ye, Angew. Chem. Int. Ed. 2017, 56, 605; e) Z.
Nairoukh, G. G. K. S. N. Kumar, Y. Minko, I. Marek, Chem. Sci. 2017, 8,
627; f) T. Wang, T. R. Hoye, J. Am. Chem. Soc. 2016, 138, 13870; g) L.
Hu, S. Xu, Z. Zhao, Y. Yang, Z. Peng, M. Yang, C. Wang, J. Zhao, J.
Am. Chem. Soc. 2016, 138, 13135; h) L.-G. Xie, S. Shaaban, X. Chen,
N. Maulide, Angew. Chem. Int. Ed. 2016, 55, 12864; i) V. Tona, S. A.
Ruider, M. Berger, S. Shaaban, M. Padmanaban, L.-G. Xie, L.
Gonzalez, N. Maulide, Chem. Sci. 2016, 7, 6032; j) C. F. Heinrich, I.
Fabre, L. Miesch, Angew. Chem. Int. Ed. 2016, 55, 5170; k) L.-G. Xie,
S. Niyomchon, A. J. Mota, L. González, N. Maulide, Nature
Communications 2016, 7, 10914; l) M. Lecomte, G. Evano, Angew.
Chem. Int. Ed. 2016, 55, 4547; m) Reviews: X.-N. Wang, H.-S. Yeom,
L.-C. Fang, S. He, Z.-X. Ma, B. L. Kedrowski, R. P. Hsung, Acc. Chem.
Res. 2013, 47, 560; n) Y. Zhang, K. A. DeKorver, H. Y. Li, A. G. Lohse,
R. Hayashi, Z. J. Lu, R. P. Hsung, Chem. Rev. 2010, 110, 5064; o) G.
Evano, A. Coste, K. Jouvin, Angew. Chem. Int. Ed. 2010, 49, 2840.
a) Analogous yndiamines (diaminoacetylenes) are known, but are
highly reactive and moisture-sensitive. For pioneering work, see: H. G.
Viehe, M. Reinstein, Angew. Chem. 1964, 76, 537; b) S. Y.
Delavarenne, H. G. Viehe, Chem. Ber. 1970, 103, 1198; c) S. Y.
Delavarenne, H. G. Viehe, Chem. Ber. 1970, 103, 1209; d) A. R. Petrov,
C. G. Daniliuc, P. G. Jones, M. Tamm, Chem. Eur. J. 2010, 16, 11804.
a) D. Brückner, Tetrahedron 2006, 62, 3809; b) For related work from
our group using dichloroenamides, see: S. J. Mansfield, C. D. Campbell,
M. W. Jones, E. A. Anderson, Chem. Commun. 2015, 51, 3316.
Other substrates, such as terminal ynamides or chloroynamides,
proved ineffective. See the Supporting Information for full details.
A. Coste, G. Karthikeyan, F. Couty, G. Evano, Angew. Chem. Int. Ed.
2009, 48, 4381.
[15] a) B. Witulski, T. Stengel, Angew. Chem. Int. Ed. 1999, 38, 2426; b) B.
Witulski, C. Alayrac, Angew. Chem. Int. Ed. 2002, 41, 3281; c) M. R.
Tracey, J. Oppenheimer, R. P. Hsung, J. Org. Chem. 2006, 71, 8629.
[16] For [2+2+2] ynamide cyclotrimerization applied to the related
herbindole natural products, see: N. Saito, T. Ichimaru, Y. Sato, Org.
Lett. 2012, 14, 1914.
[17] S. Couty, C. Meyer, J. Cossy, Angew. Chem. Int. Ed. 2006, 45, 6726.
[18]
Y. Zhang, R. P. Hsung, X. Zhang, J. Huang, B. W. Slafer, A. Davis,
Org. Lett. 2005, 7, 1047.
[19] a) C. Theunissen, B. Metayer, M. Lecomte, N. Henry, H.-C. Chan, G.
Compain, P. Gerard, C. Bachmann, N. Mokhtari, J. Marrot, A. Martin-
Mingot, S. Thibaudeau, G. Evano, Org. Biomol. Chem. 2017, 15, 4399;
b) G. Evano, M. Lecomte, P. Thilmany, C. Theunissen, Synthesis 2017,
49, 3183; c) C. Madelaine, V. Valerio, N. Maulide, Chem. Asian J. 2011,
6, 2224.
[20] a) For Diels-Alder reactions of related exocyclic 2-amidodienes, see: C.
D. Campbell, R. L. Greenaway, O. T. Holton , P. R. Walker, H. A.
Chapman, C. A. Russell, G. Carr, A. L. Thomson, E. A. Anderson,
Chem. Eur. J. 2015, 21, 12627; b) R. L. Greenaway, C. D. Campbell, H.
A. Chapman, E. A. Anderson, Adv. Synth. Catal. 2012, 354, 3187.
[2]
[3]
[4]
[5]
[6]
a) Y. Zhang, R. P. Hsung, M. R. Tracey, K. C. M. Kurtz, E. L. Vera, Org.
This article is protected by copyright. All rights reserved.