Lee et al.
JOCNote
TABLE 1. Optimization of Pd-Catalyzed Cross-Coupling Reactionsa
entry
Met
ligand
16 mol % Ph3P
16 mol % Ph3P
8 mol % Xantphos
8 mol % Xantphos
8 mol % DPEphos
16 mol % (4-CH3OC6H4)3P
16 mol % (4-CH3OC6H4)3P
16 mol % (4-CF3C6H4)3P
16 mol % (4-CF3C6H4)3P
16 mol % (4-CF3C6H4)3P
16 mol % (4-CF3C6H4)3P
16 mol % (4-CF3C6H4)3P
solvent
additive (equiv)
time (h)
yieldb (%)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
In
In
In
In
In
In
In
In
In
In
In
In
In
Mg
Zn
DMF
DMF
DMF
THF
DMF
DMF
THF
DMF
THF
THF
DMF
THF
DMF
THF
THF
LiI (3)
18
18
24
15
15
12
12
3
3
3
5
3
10
0
0
0
0
0
0
0
0
LiC1 (3)
LiI (3)
LiI (3)
LiI (3)
LiI (3)
NaI (1)
LiI (3)
NaI (1)
NaI (1.5)
NaI (1.5)
NaI (1.5)
LiI (3)
56
58
0
79c
0d
0
16 mol % (4-CF3C6H4)3P
16 mol % (4-CF3C6H4)3P
NaI (1.5)
NaI (1.5)
0
aReactions performed with In (1 equiv) and 2a (1.5 equiv). bIsolated yield. cIn (1.5 equiv) and 2a (2.3 equiv) were used. dPd(dppf )Cl2 was used as a
catalyst.
SCHEME 2. Preparation of Ethyl 2-Aryl-2,3-alkadienoates
Our initial study focused on Pd-catalyzed cross-coupling
reactions of ethyl 4-iodobenzoate (1a) with organoindium
reagent11 generated in situ from indium and ethyl 4-bromo-
2-butynoate (2a)12 (Table 1). Reaction of 1a with organoin-
dium did not proceed with 2 mol % of Pd2dba3CHCl3 and a
variety of ligands such as Ph3P, Xantphos,13 DPEphos,14 (4-
CH3OC6H4)3P, and (4-CF3C6H4)3P in the presence of MX
(M = Li and Na, X = Cl and I) as an additive in DMF or
THF (entries 1-8). However, 2 mol % of Pd2dba3CHCl3
and 16 mol % of (4-CF3C6H4)3P in the presence of NaI (1
equiv) afforded selectively ethyl 2-(4-ethoxycarbonylphenyl)-
2,3-butadienoate 3a in 56% yield in THF, indicating
that an electron-poor ligand is better than an electron-
rich ligand (entry 7 vs 9). In addition, comparison of
solvents suggests that THF is critically important for a
successful reaction (entry 11 vs 12). Of the catalytic sys-
tems examined, the best results were obtained with 2 mol %
of Pd2dba3CHCl3 and 16 mol % of (4-CF3C6H4)3P in
the presence of NaI (1.5 equiv) in THF at 70 °C for 3 h,
producing selectively 3a in 79% yield (entry 12). There is
no propargylic cross-coupling product formed. Organo-
indium generated in situ from indium (1.5 equiv) and
2a (2.3 equiv) gave the best result as a coupling partner.
The high selectivity of the present reaction was compared
to Grignard and organozinc reagents. Under the optimum
a variety of electrophiles.9 During the course of our
research program aimed at finding new indium-mediated
organic reactions,10 we envisioned the possibility of ethyl
2,3-alkadien-2-yl cross-coupling reactions by using in-
dium and ethyl 4-bromo-2-alkynoates. Herein, we report
that cross-coupling reaction of a variety of aryl iodides
with organoindium reagents generated in situ from in-
dium and ethyl 4-bromo-2-alkynoate produced ethyl
2-aryl-2,3-alkadienoates with complete regioselectivity
and chemoselectivity (Scheme 2).
(9) (a) Lee, P. H.; Sung, S.-Y.; Lee, K. Org. Lett. 2001, 3, 3201. (b) Lee, K.;
Lee, J.; Lee, P. H. J. Org. Chem. 2002, 67, 8265. (c) Lee, K.; Seomoon, D.;
Lee, P. H. Angew. Chem., Int. Ed. 2002, 41, 3901. (d) Lee, P. H.; Lee, S. W.;
Seomoon, D. Org. Lett. 2003, 5, 4963. (e) Lee, J.-Y.; Lee, P. H. J. Org. Chem.
2008, 73, 7413. (f ) Kim, S.; Seomoon, D.; Lee, P. H. Chem. Commun. 2009,
1873. (g) Lee, P. H.; Lee, S. W.; Lee, K. Org. Lett. 2003, 5, 1103. (h) Lee,
S. W.; Lee, K.; Seomoon, D.; Kim, S.; Kim, H.; Kim, H.; Shim, E.; Lee, M.;
Lee, S.; Kim, M.; Lee, P. H. J. Org. Chem. 2004, 69, 4852. (i) Lee, P. H.;
Seomoon, D.; Lee, K.; Kim, S.; Kim, H.; Kim, H.; Shim, E.; Lee, M.; Lee, S.;
Kim, M.; Sridhar, M. Adv. Synth. Catal. 2004, 346, 1641. (j) Lee, P. H.; Kim,
S.; Lee, K.; Seomoon, D.; Kim, H.; Lee, S.; Kim, M.; Han, M.; Noh, K.;
Livinghouse, T. Org. Lett. 2004, 6, 4825. (k) Lee, P. H.; Seomoon, D.; Lee, K.
Org. Lett. 2005, 7, 343. (l) Lee, P. H.; Lee, K. Angew. Chem. Int. Ed. 2005, 44,
3253. (m) Lee, P. H.; Lee, K.; Kang, Y. J. Am. Chem. Soc. 2006, 128, 139.
(n) Seomoon, D.; Lee, K.; Kim, H.; Lee, P. H. Chem. Eur. J. 2007, 13, 5197.
(o) Lee, P. H.; Sung, S.-Y.; Lee, K.; Chang, S. Synlett 2002, 146.
(12) (a) Crimmins, M. T.; Nantermet, P. G. J. Org. Chem. 1990, 55, 4235.
(b) Crimmins, M. T.; Nantermet, P. G.; Trotter, B. W.; Vallin, I. M.; Watson,
P. S.; McKerlie, L .A.; Reinhold, T. L.; Cheung, A. W. J. Org. Chem. 1993,
58, 1038. (c) Jordan, R. W.; Villeneuve, K.; Tam, W. J. Org. Chem. 2006, 71,
5830. (d) Trost, B. M.; Ball, Z. T.; Joge, T. J. Am. Chem. Soc. 2002, 124, 7922.
(e) Oh, C. H.; Park, S. J.; Ryu, J. H.; Gupta, A. K. Tetrahedron Lett. 2004, 45,
7039. (f ) MacInnes, I.; Walton, J. C. J. Chem. Soc., Perkin Trans. 2 1987,
1077. (g) Lowe, J. T.; Youngsaye, W.; Panek, J. S. J. Org. Chem. 2006, 71,
3639. (h) Cai, G.; Zhu, W.; Ma, Dawei. Tetrahedron 2006, 62, 5697. (i) Cable,
J. R.; Tramontano, A.; Midland, M. M. J. Org. Chem. 1980, 45, 28. (j) Rao,
K. S.; Mullanti, K.; Reddy, S.; Pal, M.; Iqbal, J. Tetrahedron Lett. 2005, 46,
2287.
(10) (a) Kim, H.; Lee, K.; Kim, S.; Lee, P. H. Chem. Commun. 2010, 46,
6341. (b) Mo, J.; Kim, S. H.; Lee, P. H. Org. Lett. 2010, 12, 424. (c) Kang, D.;
Eom, D.; Kim, H.; Lee, P. H. Eur. J. Org. Chem. 2010, 2330. (d) Lee, K.; Lee,
P. H. Tetrahedron Lett. 2008, 49, 4302. (e) Lee, W.; Kang, Y.; Lee, P. H.
J. Org. Chem. 2008, 73, 4326. (f ) Seomoon, D.; Lee, P. H. J. Org. Chem. 2008,
73, 1165.
(11) 1H NMR (400 MHz, DMF-d7, 25 °C) spectrum of organoindium
reagents showed two signals (δ 4.01 and 3.88) for the methylene group,
indicating that two types of propargylindium reagents (ratio = 2.62:1 for
30 min, 2.40:1 for 45 min and 1.86:1 for 60 min) were produced and the
corresponding allenylindium reagent was not formed.
(13) Xantphos: 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene.
(14) DPEphos: bis(2-diphenylphosphinophenyl)ether.
J. Org. Chem. Vol. 76, No. 1, 2011 313