pubs.acs.org/joc
An Entry to the Azocino[4,3-b]indole Framework
through a Dehydrogenative Activation of
1,2,3,4-Tetrahydrocarbazoles Mediated by DDQ:
Formal Synthesis of (()-Uleine
,†
Suleyman Patir* and Erkan Erturk*
,‡
€
€
†Department of Chemistry Education, Faculty of Education,
Hacettepe University, 06800 Beytepe, Ankara, Turkey, and
‡Chemistry Institute, TUBITAK Marmara Research Center,
41470 Gebze, Kocaeli, Turkey
FIGURE 1. Structure of uleine-type alkaloids.
Strychnos alkaloids, such as strychnine, akuammicine, tubi-
folidine, etc.2 A rather large number of synthetic pathways
have been developed for the construction of the azocino[4,3-b]-
indole skeleton so far. The majority of the reported methods
for the synthesis of these tetracyclic ring systems start either
from 2-(4-piperidinylmethyl)indole,3 3-(2-piperidinylmethyl)-
indole,4 or Fisher indolization of 2-azabicyclo[3.3.1]no-
nane.5 There also have been a few reports for the building
of the D-ring from tetrahydrocarbazole derivatives in quite
different ways.6,7 Recently, we reported the synthesis of
patir@hacettepe.edu.tr; erkan.erturk@mam.gov.tr
Received October 30, 2010
ꢀ
(2) For the synthesis of strychnine, see: (a) Bonjoch, J.; Sole, D. Chem.
Rev. 2000, 100, 3455–3482. and references cited therein. (b) Ohshima, T.; Xu,
Y.; Takita, R.; Shimizu, S.; Zhong, D.; Shibasaki, M. J. Am. Chem. Soc.
2002, 124, 14546–14547. (c) Mori, M.; Nakanishi, M.; Kajishima, D.; Sato,
Y. J. Am. Chem. Soc. 2003, 125, 9801–9807. (d) Kaburagi, Y.; Tokuyama,
H.; Fukuyama, T. J. Am. Chem. Soc. 2004, 126, 10246–10247. (e) Zhang, H.;
Boonsombat, J.; Padwa, A. Org. Lett. 2007, 9, 279–282. (f) Sirasani, G.; Paul,
T.; Dougherty, W., Jr.; Kassel, S.; Andrade, R. B. J. Org. Chem. 2010, 75,
3529–3532.
(3) (a) Jackson, A.; Gaskell, A. J.; Wilson, N. D. V.; Joule, J. A. Chem.
Commun. 1968, 364. (b) Dolby, L. J.; Biere, H. J. Am. Chem. Soc. 1968, 90,
2699–2700. (c) Jackson, A.; Wilson, N. D. V.; Joule, J. A. J. Chem. Soc. C
1969, 2738–2747. (d) Forns, P.; Diez, A.; Rubiralta, M.; Solans, X.; Font-
Bardia, M. Tetrahedron 1996, 52, 3563–3574. (e) Saito, M.; Kawamura, M.;
Hiroya, K.; Ogasawara, K. Chem. Commun. 1997, 765–766. (f) Amat, M.;
It is presented that hexahydro-1,5-methano[4,3-b]indoles
were efficiently synthesized in high yields (up to
89% yield) through the cyclization reaction of starting
tetrahydrocarbazoles bearing a monoalkylaminocarbo-
nylmethyl moiety at the C-2 position mediated by
2,3-dichloro-5,6-dicyanobenzoquinone (DDQ). A mech-
anistic proposal is also given that mainly includes two
cascade reactions: (i) formation of a vinylogous iminium
cation via DDQ-mediated dehydrogenation of tetrahydro-
carbazole functionality and (ii) intra-molecular and syn-
selective addition of the amide functionality as the nucleo-
phile to the vinylogous iminium cation. Furthermore, this
cyclization reaction was successfully utilized in the formal
total synthesis of (()-uleine, an Aspidospermatan skeletal
type alkaloid.
ꢀ
Perez, M.; Llor, N.; Escolano, C.; Luque, F. J.; Molins, E.; Bosch, J. J. Org.
Chem. 2004, 69, 8681–8693.
(4) (a) Dolby, L. J.; Biere, H. J. Org. Chem. 1970, 35, 3843–3845. (b)
€
€
Buchi, G.; Gould, S. J.; Naf, F. J. Am. Chem. Soc. 1971, 93, 2492–2501. (c)
Kametani, T.; Suzuki, T. J. Org. Chem. 1971, 36, 1291–1293. (d) Kametani,
T.; Suzuki, T. Chem. Pharm. Bull. 1971, 19, 1424–1425. (e) Natsume, M.;
Kitagawa, Y. Tetrahedron Lett. 1980, 21, 839–840. (f) Harris, M.;
Besselievre, R.; Grierson, D. S.; Husson, H.-P. Tetrahedron Lett. 1981, 22,
331–334. (g) Grierson, D. S.; Harris, M.; Husson, H.-P. Tetrahedron 1983,
39, 3683–3694. (h) Natsume, M.; Utsunomiya, I.; Yamaguchi, K.; Sakai,
S.-I. Tetrahedron 1985, 41, 2115–2123. (i) Blechert, S.; Knier, R.; Schroers,
H.; Wirth, T. Synthesis 1995, 592–604. (j) Tanaka, K.; Katsumura, S. J. Am.
Chem. Soc. 2002, 124, 9660–9661. (k) Tasber, E. S.; Garbaccio, R. M.
Tetrahedron Lett. 2003, 44, 9185–9188. (l) Tanaka, K.; Kobayashi, T.; Mori,
H.; Katsumura, S. J. Org. Chem. 2004, 69, 5906–5925.
Efficient and atom-economic total synthesis of complex
molecules is a great endeavor in organic synthesis.1 Conse-
quently, applications of new (catalytic) reactions in total
synthesis are of particular interest for demonstrating their
efficiency and generality. Uleine-type indole alkaloids (e.g.,
1-4) constitute an important subgroup of the Strychnos
alkaloids. The 1,5-methanoazocino[4,3-b]indole moiety
bearing an ethyl chain at the bridge carbon atom is the
common key structure of the uleine alkaloids (Figure 1). On
the other hand, azocino[4,3-b]indole and azocino[4,3-b]indo-
line skeletons are also found as the key elements in other
ꢁ
(5) Gracia, J.; Casamitjana, N.; Bonjoch, J.; Bosch, J. J. Org. Chem. 1994,
59, 3939–3951.
(6) (a) Schmitt, M. H.; Blechert, S. Angew. Chem., Int. Ed. 1997, 36, 1474–
1476. (b) Jiricek, J.; Blechert, S. J. Am. Chem. Soc. 2004, 126, 3534–3538.
(c) Akdag, R.; Ergun, Y. J. Heterocycl. Chem. 2007, 44, 863–866.
(7) For the other synthetic studies leading to methanoazocino[4,3-
b]indole-6-one derivatives, see: (a) Kametani, T.; Suzuki, T. J. Chem. Soc.
ꢀ
C 1971, 1053–1054. (b) Feliz, M.; Bosch, J.; Mauleon, D.; Amat, M.;
Domingo, A. J. Org. Chem. 1982, 47, 2435–2440. (c) Bosch, J.; Rubiralta,
ꢀ
ꢀ
M.; Domingo, A.; Bolos, J.; Linares, A.; Minguillon, C.; Amat, M.; Bonjoch,
J. J. Org. Chem. 1985, 50, 1516–1522. (d) Rubiralta, M.; Torrens, A.; Reig, I.;
Grierson, D. S.; Husson, H.-P. Heterocycles 1989, 29, 2121–2133. (e) Teuber,
H.-J.; Tsaklakidis, C.; Bats, J. W. Liebigs Ann. Chem. 1992, 461–466. (f) Diez,
A.; Castells, J.; Forns, P.; Rubiralta, M.; Grierson, D. S.; Husson, H.-P.;
(1) (a) Nicolaou, K. C.; Sorensen, E. J. Classcis in Total Synthesis; VCH:
Weinheim, Germany, 1996. (b) Nicolaou, K. C.; Vourloumis, D.;
Winssinger, N.; Baran, P. S. Angew. Chem., Int. Ed. 2000, 39, 44–122.
(c) Trost, B. M. Science 1991, 254, 1471–1477.
Solans, X.; Font-Bardıa, M. Tetrahedron 1994, 50, 6585–6602. (g) Amat, M.;
´
ꢀ
Perez, M.; Llor, N.; Martinelli, M.; Molins, E.; Bosch, J. Chem. Commun.
2004, 1602–1603. (h) Ishikura, M.; Takahashi, N.; Takahashi, H.; Yanada,
K. Heterocycles 2005, 66, 45–50.
DOI: 10.1021/jo1021663
r
Published on Web 12/13/2010
J. Org. Chem. 2011, 76, 335–338 335
2010 American Chemical Society