Published on Web 12/10/2010
Catalytic Asymmetric Oxidation of Cyclic Dithioacetals: Highly
Diastereo- and Enantioselective Synthesis of the S-Oxides by
a Chiral Aluminum(salalen) Complex
Junichi Fujisaki,† Kenji Matsumoto,†,§ Kazuhiro Matsumoto,† and
Tsutomu Katsuki*,†,‡
Department of Chemistry, Faculty of Science, Graduate School, and Institute for AdVanced
Study, Kyushu UniVersity, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
Received August 10, 2010; E-mail: katsuscc@chem.kyushu-univ.jp
Abstract: Aluminum(salalen) complex 1 [salalen ) half-reduced salen, salen ) N,N′-ethylenebis(sali-
cylideneiminato)] was found to be a highly efficient catalyst for asymmetric oxidation of cyclic dithioacetals
in the presence of 30% hydrogen peroxide as an oxidant. In the reaction of a series of 2-substituted 1,3-
dithianes bearing alkyl, alkenyl, alkynyl, and aryl groups as the substituent, the trans-monoxides were
obtained in high yields with 19:1 f >20:1 dr (diastereomeric ratio) and 98-99% ee (enamtiomeric excess).
The reaction of nonsubstituted 1,3-dithiane also proceeded in a highly enantioselective manner to give the
monoxide with a small formation of the trans-1,3-dioxide, an overoxidation product. Five-membered 1,3-
dithiolanes and seven-membered 1,3-dithiepanes also underwent oxidation to give monoxides with high
diastereo- and enantioselectivity. It was found that the equilibrium between the two chairlike conformers of
dithianes has relevance to the observed diastereoselectivity in the first oxidation process, and the dioxide
formation in the oxidation of 1,3-dithiane and its stereochemistry also can be explained by the conformational
equilibrium of the product monoxide.
Introduction
alkyl hydroperoxide as oxidant, a variety of chiral ligands have
been introduced for titanium-catalyzed oxidation.7 Other transi-
Optically active sulfoxides are efficient chiral auxiliaries,
organocatalysts, and ligands for metal complexes utilized in
stereoselective synthesis.1 They are also found in an important
class of biologically active compounds.2 For example, omepra-
zole and derivatives containing a chiral sulfoxide moiety are
present in leading pharmaceuticals.3 A reliable route to this class
of compounds involves asymmetric oxidation of the correspond-
ing sulfides. Thus, the past few decades have witnessed
significant progress in the field of catalytic asymmetric sulfur
oxidation.4 Since the seminal reports by the Kagan group5 and
Modena group6 using titanium/tartrate catalysts together with
tion-metal catalysts based on vanadium,8 manganese,9 iron,10
and so on,11-15 and chemoenzymatic16 methods have also been
(7) For titanium-catalyzed oxidation of sulfides, see: (a) Nakajima, K.;
Sasaki, C.; Kojima, M.; Aoyama, T.; Ohba, S.; Saito, Y.; Fujita, J.
Chem. Lett. 1987, 16, 2189-2192. (b) Komatsu, N.; Nishibayashi,
Y.; Sugita, T.; Uemura, S. Tetrahedron Lett. 1992, 33, 5391–5394.
(c) Yamanoi, Y.; Imamoto, T. J. Org. Chem. 1997, 62, 8560–8564.
(d) Donnoli, M. I.; Superchi, S.; Rosini, C. J. Org. Chem. 1998, 63,
9392–9395. (e) Saito, B.; Katsuki, T. Tetrahedron Lett. 2001, 42,
3873–3876. (f) Bryliakov, K. P.; Talsi, E. P. Eur. J. Org. Chem. 2008,
3369–3376.
(8) For vanadium-catalyzed oxidation of sulfides, see: (a) Nakajima, K.;
Kojima, M.; Fujita, J. Chem. Lett. 1986, 15, 1483-1486. (b) Bolm,
C.; Bienewald, F. Angew. Chem., Int. Ed. Engl. 1995, 34, 2640–2642.
(c) Vetter, A. H.; Berkessel, A. Tetrahedron Lett. 1998, 39, 1741–
1744. (d) Ohta, C.; Katsuki, T. Tetrahedron Lett. 2001, 42, 3885–
3888. (e) Sun, J.; Zhu, C.; Dai, Z.; Yang, M.; Pan, Y.; Hu, H. J. Org.
Chem. 2004, 69, 8500–8503. (f) Drago, C.; Caggiano, L.; Jackson,
R. F. W. Angew. Chem., Int. Ed. 2005, 44, 7221–7223.
† Department of Chemistry.
‡ Institute for Advanced Study.
§ Current address: Department of Chemistry, Faculty of Science, Kochi
University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan.
(1) (a) Mellah, M.; Voituriez, A.; Schulz, E. Chem. ReV. 2007, 107, 5133–
5209. (b) Pellissier, H. Tetrahedron 2007, 63, 1297–1330. (c) Pellissier,
H. Tetrahedron 2006, 62, 5559–5601. (d) Kobayashi, S.; Ogawa, C.;
Konishi, H.; Sugiura, M. J. Am. Chem. Soc. 2003, 125, 6610–6611.
(2) (a) Ferna´ndez, I.; Khiar, N. Chem. ReV. 2003, 103, 3651–3705. (b)
Legros, J.; Dehli, J. R.; Bolm, C. AdV. Synth. Catal. 2005, 347, 19–
31.
(9) For manganese-catalyzed oxidation of sulfides, see: (a) Palucki, M.;
Hanson, P.; Jacobsen, E. N. Tetrahedon Lett. 1992, 33, 7111-7114.
(b) Noda, K.; Hosoya, N.; Yanai, K.; Irie, R.; Katsuki, T. Tetrahedron
Lett. 1994, 35, 1887–1890. (c) Noda, K.; Hosoya, N.; Irie, R.;
Yamashita, Y.; Katsuki, T. Tetrahedron 1994, 50, 9609–9618. (d)
Kokubo, C.; Katsuki, T. Tetrahedron 1996, 52, 13895–13900.
(10) For iron-catalyzed oxidation of sulfides, see: (a) Legros, J.; Bolm, C.
Angew. Chem., Int. Ed. 2003, 42, 5487-5489. (b) Legros, J.; Bolm,
C. Angew. Chem., Int. Ed. 2004, 43, 4225–4228. (c) Bryliakov, K. P.;
Talsi, E. P. Angew. Chem., Int. Ed. 2004, 43, 5228–5230. (d) Legros,
J.; Bolm, C. Chem.sEur. J. 2005, 11, 1086–1092. (e) Egami, H.;
Katsuki, T. J. Am. Chem. Soc. 2007, 129, 8940–8941.
(3) Lindberg, P.; Bra¨ndstro¨m, A.; Wallmark, B.; Mattsson, H.; Rikner,
L.; Hoffmann, K.-J. Med. Res. ReV. 1990, 10, 1–54.
(4) (a) Bolm, C.; Mun˜iz, K.; Hildebrand, J. P. In ComprehensiVe
Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.;
Springer-Verlag: Berlin, Germany, 1999; Vol. II, pp 697-710. (b)
Kagan, H. In Catalytic Asymmetric Synthesis, 2nd ed.; Ojima, I., Ed.;
Wiley-VCH: New York, 2000; pp 327-356. (c) Wojaczyn˜ska, E.;
Wojaczyn˜ski, J. Chem. ReV. 2010, 110, 4303–4356.
(11) For copper-catalyzed oxidation of sulfides, see: Kelly, P.; Lawrence,
S. E.; Maguire, A. R. Synlett 2007, 1501-1506.
(12) For niobium-catalyzed oxidation of sulfides, see: Miyazaki, T.; Katsuki,
T. Synlett 2003, 1046-1048.
(5) Pitchen, P.; Dun˜ach, E.; Deshmukh, M. N.; Kagan, H. B. J. Am. Chem.
Soc. 1984, 106, 8188–8193.
(6) Di Furia, F.; Modena, G.; Seraglia, R. Synthesis 1984, 325–326.
9
56 J. AM. CHEM. SOC. 2011, 133, 56–61
10.1021/ja106877x 2011 American Chemical Society