10.1002/chem.201802167
Chemistry - A European Journal
COMMUNICATION
the nitrogen atmosphere, electrolysis was initiated at a constant current of
10 mA at room temperature. The current input was removed after 3 h. The
reaction mixture was subsequently poured into a saturated sodium
bicarbonate solution (ca. 15 mL). The aqueous layer was separated and
extracted with dichloromethane (3 × 5 mL), and the combined organic
layers were washed with brine and dried over sodium sulfate. After
concentration in vacuo, the crude residue was subjected to flash column
chromatography on silica gel to yield the desired cyclization product.
[6]
[7]
For a review, see: J. Xuan, A. Studer, Chem. Soc. Rev. 2017, 46, 4329-
4346.
For representative examples of radical ene-yne cyclization, see: (a) P.
Gao, X.-B. Yan, T. Tao, F. Yang, T. He, X.-R. Song, X.-Y. Liu, Y.-M. Liang,
Chem. – Eur. J. 2013, 19, 14420–14424. (b) Y.-T. He, L.-H. Li, Z.-Z. Zhou,
H.-L. Hua, Y.-F. Qiu, X.-Y. Liu, Y.-M. Liang, Org. Lett. 2014, 16, 3896–
3899. (c) L. Zhang, Z. Li, Z.-Q. Liu, Org. Lett. 2014, 16, 3688–3691. (d)
Y.-Q. Wang, Y.-T. He, L.-L. Zhang, X.-X. Wu, X.-Y. Liu, Y.-M. Liang, Org.
Lett. 2015, 17, 4280–4283. (e) J. W. Tucker, J. D. Nguyen, J. M. R.
Narayanam, S. W. Krabbe, C. R. J. Stephenson, Chem. Commun. 2010,
46, 4985-4987. (f) J. Xuan, D. Gonzalez-Abradelo, C. A. Strassert, C.-G.
Daniliuc, A. Studer, Eur. J. Org. Chem. 2016, 4961-4964.
Acknowledgements
[8]
For representative examples of ene-yne cyclization via non-radical
pathways, which usually provide different product structures, see: (a) F.
Boeda, H. Clavier, M. Jordaan, W. H. Meyer, S. P. Nolan, J. Org.
Chem., 2008, 73, 259-263. (b) Y. Yamamoto, S. Kuwabara, Y. Ando, H.
Nagata, H. Nishiyama, K. Itoh, J. Org. Chem. 2004, 69, 6697-6705. (c)
S. Reid, A. G. M. Barrett, M. S. Hill, P. A. Procopiou Org. Lett. 2014, 16,
6016-6019. (d) L. Zhang, J. Sun, S. A. Kozmin Adv. Synth. Catal. 2006,
348, 2271-2296. (e) V. Mamane, T. Gress, H. Krause, A. Fürstner, J. Am.
Chem. Soc. 2004, 126, 8654-8655. (f) M. R. Luzung, J. P. Markham, F.
D. Toste, J. Am. Chem. Soc. 2004, 126, 10858-10859. (g) L.-G. Zhuo,
J.-J. Zhang, Z.-X. Yu J. Org. Chem. 2014, 79, 3809-3820. (h) L.-G. Zhuo,
J.-J. Zhang, Z.-X. Yu J. Org. Chem. 2012, 77, 8527-8540. (i) N. Kim, R.
E. M. Brooner, R. A. Widenhoefer Organometallics 2017, 36, 673-678.
(a) J. R. Lewis, Nat. Prod. Rep. 2001, 95-128. (b) J. P. Michael, Nat. Prod.
Rep. 2005, 22, 603-626.
Financial support was provided by Cornell University, the
Atkinson Center for a Sustainable Future, and the National
Science Foundation (CHE-1751839). This study made use of the
Cornell Center for Materials Research Shared Facilities
supported from NSF MRSEC (DMR-1120296) and NMR facility
supported by the NSF (CHE-1531632). We thank Dr. Samantha
MacMillan for X-ray crystallography data collection and analysis,
Dr. Ivan Keresztes for assistance in the stereochemical analysis
of compound 5, and Prof. Naoto Chatani for helpful discussion on
substrate synthesis.
[8]
[9]
Keywords: electrocatalysis • anodically coupled electrolysis •
trifluoromethylation • ene-yne cyclization • pyrrolidine
(a) K. Müller, C. Faeh, F. Diederich, Science 2007, 317, 1881-1886. (b)
E. P. Gillis, K. J. Eastman, M. D. Hill, D. J. Donnelly, N. A. Meanwell, J.
Med. Chem. 2015, 58, 8315-8359.
[1]
For representative reviews, see: (a) K. D. Moeller, Tetrahedron 2000, 56,
9527–9554. (b) J. B. Sperry, D. L. Wright, Chem. Soc. Rev. 2006, 35,
605−617. (c) J.-i. Yoshida, K. Kataoka, R. Horcajada, A. Nagaki, Chem.
Rev. 2008, 108, 2265–2299. (d) R. Francke, R. D. Little, Chem. Soc. Rev.
2014, 43, 2492–2521. (e) M. Yan, Y. Kawamata, P. S. Baran, Chem. Rev.
2017, 117, 13230–13319. (f) R. Feng, J. A. Smith, K. D. Moeller, Acc.
Chem. Res. 2017, 50, 2346-2352. (g) S. Möhle, M. Zirbes, E. Rodrigo, T.
Gieshoff, A. Wiebe, S. R. Waldvogel, Angew. Chem. Int. Ed. 2014, 57,
6018–6041.
[10] R. Jana, T. P. Pathak, M. S. Sigman, Chem. Rev. 2011, 111, 1417-1492.
[11] (a) J.-B. Tommasino, A. Brondex, M. Médebielle, M. Thomalla, B. R.
Langlois, T. Billard, Synlett 2002, 1697-1699. (b) A. G. O’Brien, A.
Maruyama, Y. Inokuma, M. Fujita, P. S. Baran, D. G. Blackmond, Angew.
Chem. Int. Ed. 2014, 53, 11868-11871. Trifluoromethylsulfonium salts
have also been used for the generation of CF3· via electrochemical
reduction; see: S, Mizuta, S. Verhoog, X. Wang, N. Shibata, V.
Gouverneur, M. Médebielle, J. Fluorine Chem. 2013, 155, 124-131.
[12] The oxidation of CF3SO2Na is irreversible and its half-peak potential (Ep/2
= 0.81 V) is presented, whereas the oxidation of [MnII]–Cl is apparently
reversible and the half-wave potential is given (E1/2 = 0.75 V).
[13] S. J. Blanksby, G. B. Ellison, Acc. Chem. Res. 2003, 36, 255-263.
[14] N, Fu, G. S. Sauer, S. Lin, J. Am. Chem. Soc. 2017, 139, 15548-15553.
[15] C. Galli, A. Guarnieri, H. Koch, P. Mencarelli, Z. Rappoport, J. Org. Chem.
1997, 62, 4072-4077.
[16] For related studies on ligand effect in MnIII-mediated reactions, see: (a)
B. B. Snider, B. A. McCarthy J. Org. Chem. 1993, 58, 6217-6223. (b) R.
Ren, H. Zhao, L. Huan, C. Zhu, Angew. Chem. Int. Ed. 2015, 54, 12692-
12696.
[17] 19F NMR showed the formation of CF3H and various unidentified
trifluoromethylation products.
[2]
For representative recent examples, see: (a) E. J. Horn, B. R. Rosen, Y.
Chen, J. Tang, K. Chen, M. D. Eastgate, P. S. Baran, Nature 2016, 533,
177-81. (b) Q.-L. Yang, Y.-Q. Li, C. Ma, P. Fang, X.-J. Zhang, T.-S. Mei,
J. Am. Chem. Soc. 2017, 139, 3293-3298. (c) N. Sauermann, T. H.
Meyer, C. Tian, L. Ackermann, J. Am. Chem. Soc. 2017, 139, 18452-
18455. (d) M. Rafiee, F. Wang, D. P. Hruszkewycz, S. S. Stahl, J. Am.
Chem. Soc. 2018, 140, 22-25. (e) P. Xiong, H.-H. Xu, J. Song, H.-C. Xu,
J. Am. Chem. Soc. 2018, 140, 2460-2484.
[3]
For representative examples, see: (a) J. Mihelcic, K. D. Moeller, J. Am.
Chem. Soc. 2003, 125, 36-37. (b) A. K. Miller, C. C. Hughes, J. J.
Kennedy-Smith, S. N.; Gradl, D. Trauner, J. Am. Chem. Soc. 2006, 128,
17057−17062. (c) Y. S. Park, R. D. Little, J. Org. Chem. 2008, 73, 6807-
6815. (d) B. R. Rosen, E. W. Werner, A. G. O’Brien, P. S. Baran, J. Am.
Chem. Soc. 2014, 136, 5571−5574. (e) M. A. Kabeshov, B. Musio, P. R.
D. Murray, D. L. Browne, S. V. Ley, Org. Lett. 2014, 16, 4618-4621.
K.-Y. Ye, G. Pombar, N. Fu, G. S. Sauer, I. Keresztes, S. Lin, J. Am.
Chem. Soc. 2018, 140, 2438-2441.
[18] The selectivity trend among products 9–11 cannot simply be rationalized
using the steric effect, as the stability (and thus the structure and
reactivity) of the corresponding alkenyl radicals is influenced by the a-
substituents.
[4]
[5]
[19] (a) B. B. Snider, Chem. Rev. 1996, 96, 339–363. (b) B. B. Snider,
Tetrahedron 2009, 65, 10738−10744. (c) K. D. Donnelly, W. E. Fristad,
B. J. Gellerman, J. R. Peterson, B. J. Selle, Tetrahedron Lett. 1984, 25,
607−610.
The mechanistic rational for the selective addition stems from the
persistent radical effect. See: (a) A. Studer, Chem. – Eur. J. 2001, 7,
1159–1164. (b) H. Fisher, Chem. Rev. 2001, 101, 3581-3610. (c) M. Yan,
J. C. Lo, J. T. Edwards, P. S. Baran, J. Am. Chem. Soc. 2016, 138,
12692-12714.
This article is protected by copyright. All rights reserved.