Article
Journal of Medicinal Chemistry, 2011, Vol. 54, No. 1 129
References
(25) Keene, C. D.; Rodrigues, C. M.; Eich, T.; Chhabra, M. S.; Steer,
C. J.; Low, W. C. Tauroursodeoxycholic acid, a bile acid, is
neuroprotective in a transgenic animal model of Huntington’s
disease. Proc. Natl. Acad. Sci. U.S.A 2002, 99, 10671–10676.
(26) Keene, C. D.; Rodrigues, C. M.; Eich, T.; Linehan-Stieers, C.; Abt,
A.; Kren, B. T.; Steer, C. J.; Low, W. C. A bile acid protects against
motor and cognitive deficits and reduces striatal degeneration in
the 3-nitropropionic acid model of Huntington’s disease. Exp.
Neurol. 2001, 171, 351–360.
(27) Lukivskaya, O.; Zavodnik, L.; Knas, M.; Buko, V. Antioxidant
mechanism of hepatoprotection by ursodeoxycholic acid in experi-
mental alcoholic steatohepatitis. Adv. Med. Sci. 2006, 51, 54–59.
(28) Alberts, D. S.; Martinez, M. E.; Hess, L. M.; Einspahr, J. G.;
Green, S. B.; Bhattacharyya, A. K.; Guillen, J.; Krutzsch, M.;
Batta, A. K.; Salen, G.; Fales, L.; Koonce, K.; Parish, D.; Clouser,
M.; Roe, D.; Lance, P. Phase III trial of ursodeoxycholic acid to
prevent colorectal adenoma recurrence. J. Natl. Cancer Inst. 2005,
97, 846–853.
(29) Shah, S. A.;Looby, E.; Volkov, Y.; Long, A.; Kelleher, D. Ursodeoxy-
cholic acid inhibits translocation of protein kinase C in human colonic
cancer cell lines. Eur. J. Cancer 2005, 41, 2160–2169.
(30) Khare, S.; Mustafi, R.; Cerda, S.; Yuan, W.; Jagadeeswaran, S.;
Dougherty, U.; Tretiakova, M.; Samarel, A.; Cohen, G.; Wang, J.;
Moore, C.; Wali, R.; Holgren, C.; Joseph, L.; Fichera, A.; Li, Y. C.;
Bissonnette, M. Ursodeoxycholic acid suppresses Cox-2 expression
in colon cancer: roles of Ras, p38, and CCAAT/enhancer-binding
protein. Nutr. Cancer 2008, 60, 389–400.
(31) Shah, S. A.; Volkov, Y.; Arfin, Q.; Abdel-Latif, M. M.; Kelleher,
D. Ursodeoxycholic acid inhibits interleukin 1 beta [corrected] and
deoxycholic acid-induced activation of NF-kappaB and AP-1 in
human colon cancer cells. Int. J. Cancer 2006, 118, 532–539.
(32) Poupon, R. E.; Balkau, B.; Eschwege, E.; Poupon, R. A multi-
center, controlled trial of ursodiol for the treatment of primary
biliary cirrhosis. UDCA-PBC Study Group. N Engl. J. Med. 1991,
324, 1548–1554.
(33) Miyaguchi, S.; Mori, M. Ursodeoxycholic acid (UDCA) sup-
presses liver interleukin 2 mRNA in the cholangitis model. Hepa-
togastroenterology 2005, 52, 596–602.
(34) Saeki, R.; Ogino, H.; Kaneko, S.; Unoura, M.; Kobayashi, K.
Effects of chenodeoxycholic and ursodeoxycholic acids on inter-
feron-gamma production by peripheral blood mononuclear cells
from patients with primary biliary cirrhosis. J. Gastroenterol. 1995,
30, 739–744.
(35) Calmus, Y.; Gane, P.; Rouger, P.; Poupon, R. Hepatic expression
of class I and class II major histocompatibility complex molecules
in primary biliary cirrhosis: effect of ursodeoxycholic acid. Hepa-
tology 1990, 11, 12–15.
(36) Terasaki, S.; Nakanuma, Y.; Ogino, H.; Unoura, M.; Kobayashi,
K. Hepatocellular and biliary expression of HLA antigens in
primary biliary cirrhosis before and after ursodeoxycholic acid
therapy. Am. J. Gastroenterol. 1991, 86, 1194–1199.
(37) Nishigaki, Y.; Ohnishi, H.; Moriwaki, H.; Muto, Y. Ursodeoxy-
cholic acid corrects defective natural killer activity by inhibiting
prostaglandin E2 production in primary biliary cirrhosis. Dig. Dis.
Sci. 1996, 41, 1487–1493.
(38) Ikegami, T.; Matsuzaki, Y.; Fukushima, S.; Shoda, J.; Olivier,
J. L.; Bouscarel, B.; Tanaka, N. Suppressive effect of ursodeoxy-
cholic acid on type IIA phospholipase A2 expression in HepG2
cells. Hepatology 2005, 41, 896–905.
(39) Weitzel, C.; Stark, D.; Kullmann, F.; Scholmerich, J.; Holstege, A.;
Falk, W. Ursodeoxycholic acid induced activation of the gluco-
corticoid receptor in primary rat hepatocytes. Eur. J. Gastroenterol.
Hepatol. 2005, 17, 169–177.
(40) Tanaka, H.; Makino, I. Ursodeoxycholic acid-dependent activa-
tion of the glucocorticoid receptor. Biochem. Biophys. Res. Com-
mun. 1992, 188, 942–948.
(41) Miura, T.; Ouchida, R.; Yoshikawa, N.; Okamoto, K.; Makino,
Y.; Nakamura, T.; Morimoto, C.; Makino, I.; Tanaka, H. Func-
tional modulation of the glucocorticoid receptor and suppression
of NF-kappaB-dependent transcription by ursodeoxycholic acid.
J. Biol. Chem. 2001, 276, 47371–47378.
(42) Tanaka, H.; Makino, Y.; Miura, T.; Hirano, F.; Okamoto, K.;
Komura, K.; Sato, Y.; Makino, I. Ligand-independent activation
of the glucocorticoid receptor by ursodeoxycholic acid. Repression
of IFN-gamma-induced MHC class II gene expression via a
glucocorticoid receptor-dependent pathway. J. Immunol. 1996,
156, 1601–1608.
(1) Renaud, J. P.; Moras, D. Structural studies on nuclear receptors.
Cell. Mol. Life Sci. 2000, 57, 1748–1769.
(2) Stahn, C.; Lowenberg, M.; Hommes, D. W.; Buttgereit, F.
Molecular mechanisms of glucocorticoid action and selective gluco-
corticoid receptor agonists. Mol. Cell. Endocrinol. 2007, 275, 71–78.
(3) Banciu, M.; Schiffelers, R. M.; Metselaar, J. M.; Storm, G. Utility
of targeted glucocorticoids in cancer therapy. J. Liposome Res.
2008, 18, 47–57.
(4) Heitzer, M. D.; Wolf, I. M.; Sanchez, E. R.; Witchel, S. F.;
DeFranco, D. B. Glucocorticoid receptor physiology. Rev. Endocr.
Metab. Disord. 2007, 8, 321–330.
(5) Necela, B. M.; Cidlowski, J. A. Mechanisms of glucocorticoid
receptor action in noninflammatory and inflammatory cells. Proc.
Am. Thorac. Soc. 2004, 1, 239–246.
(6) Starr, D. B.; Matsui, W.; Thomas, J. R.; Yamamoto, K. R.
Intracellular receptors use a common mechanism to interpret
signaling information at response elements. Genes Dev. 1996, 10,
1271–1283.
(7) Smirnov, A. N. Nuclear receptors: nomenclature, ligands, mecha-
nisms of their effects on gene expression. Biochemistry (Moscow)
2002, 67, 957–977.
(8) Jenkins, B. D.; Pullen, C. B.; Darimont, B. D. Novel glucocorticoid
receptor coactivator effector mechanisms. Trends Endocrinol.
Metab. 2001, 12, 122–126.
(9) Deroo, B. J.; Archer, T. K. Glucocorticoid receptor-mediated
chromatin remodeling in vivo. Oncogene 2001, 20, 3039–3046.
(10) Morrison, N.; Eisman, J. Role of the negative glucocorticoid
regulatory element in glucocorticoid repression of the human
osteocalcin promoter. J. Bone Miner. Res. 1993, 8, 969–975.
(11) Sakai, D. D.; Helms, S.; Carlstedt-Duke, J.; Gustafsson, J. A.;
Rottman, F. M.; Yamamoto, K. R. Hormone-mediated repres-
sion: a negative glucocorticoid response element from the bovine
prolactin gene. Genes Dev. 1988, 2, 1144–1154.
(12) Yudt, M. R.; Cidlowski, J. A. The glucocorticoid receptor: coding a
diversity of proteins and responses through a single gene. Mol.
Endocrinol. 2002, 16, 1719–1726.
(13) Zanchi, N. E.; Filho, M. A.; Felitti, V.; Nicastro, H.; Lorenzeti,
F. M.; Lancha, A. H., Jr. Glucocorticoids: extensive physiological
actions modulated through multiple mechanisms of gene regula-
tion. J. Cell. Physiol. 2010, 224, 311–315.
(14) Rosen, J.; Miner, J. N. The search for safer glucocorticoid receptor
ligands. Endocr. Rev. 2005, 26, 452–464.
(15) Vayssiere, B. M.; Dupont, S.; Choquart, A.; Petit, F.; Garcia, T.;
Marchandeau, C.; Gronemeyer, H.; Resche-Rigon, M. Synthetic
glucocorticoids that dissociate transactivation and AP-1 transrey-
pression exhibit antiinflammatory activity in vivo. Mol. Endocrinol.
1997, 11, 1245–1255.
(16) Belvisi, M. G.; Wicks, S. L.; Battram, C. H.; Bottoms, S. E.;
Redford, J. E.; Woodman, P.; Brown, T. J.; Webber, S. E.; Foster,
M. L. Therapeutic benefit of a dissociated glucocorticoid and the
relevance of in vitro separation of transrepression from transacti-
vation activity. J. Immunol. 2001, 166, 1975–1982.
(17) Xiao, H. Y.; Wu, D. R.; Malley, M. F.; Gougoutas, J. Z.; Habte,
S. F.; Cunningham, M. D.; Somerville, J. E.; Dodd, J. H.; Barrish,
J. C.; Nadler, S. G.; Dhar, T. G. Novel synthesis of the
hexahydroimidazo[1,5b]isoquinoline scaffold: application to the
synthesis of glucocorticoid receptor modulators. J. Med. Chem.
2010, 53, 1270–1280.
(18) Schoch, G. A.; D’Arcy, B.; Stihle, M.; Burger, D.; Bar, D.; Benz, J.;
Thoma, R.; Ruf, A. Molecular switch in the glucocorticoid recep-
tor: active and passive antagonist conformations. J. Mol. Biol.
2010, 395, 568–577.
(19) De Bosscher, K. Selective Glucocorticoid Receptor modulators.
J Steroid Biochem Mol. Biol. 2009, 120, 96–104.
(20) Heathcote, E. J. Management of primary biliary cirrhosis. The
American Association for the Study of Liver Diseases practice
guidelines. Hepatology 2000, 31, 1005–1013.
(21) Azzaroli, F.; Mehal, W.; Soroka, C. J.; Wang, L.; Lee, J.; Crispe, N.;
Boyer, J. L. Ursodeoxycholic acid diminishes Fas-ligand-induced
apoptosis in mouse hepatocytes. Hepatology 2002, 36, 49–54.
(22) Amaral, J. D.; Castro, R. E.; Steer, C. J.; Rodrigues, C. M. p53 and
the regulation of hepatocyte apoptosis: implications for disease
pathogenesis. Trends Mol. Med. 2009, 15, 531–541.
(23) Rodrigues, C. M.; Ma, X.; Linehan-Stieers, C.; Fan, G.; Kren, B. T.;
Steer, C. J. Ursodeoxycholic acid prevents cytochrome c release in
apoptosis by inhibiting mitochondrial membrane depolarization and
channel formation. Cell Death Differ. 1999, 6, 842–854.
(24) Fimognari, C.; Lenzi, M.; Cantelli-Forti, G.; Hrelia, P. Apoptosis
and modulation of cell cycle control by bile acids in human
leukemia T cells. Ann. N.Y. Acad. Sci. 2009, 1171, 264–269.
(43) Abdel-Latif, M. M.; Duggan, S.; Reynolds, J. V.; Kelleher, D.
Inflammation and esophageal carcinogenesis. Curr. Opin. Pharmacol.
2009, 9, 396–404.
(44) Sola, S.; Amaral, J. D.; Borralho, P. M.; Ramalho, R. M.; Castro,
R. E.; Aranha, M. M.; Steer, C. J.; Rodrigues, C. M. Functional