LETTER
Synthesis of Ro 67-8867, a NMDA 2B Receptor Antagonist
1171
NH2
Br
COOEt
K2CO3
CH2=CH(CH2)2Br
K2CO3, NaI
N
COOEt
NH
DMF, r.t.
79%
DMF, 100 °C
79%
1
2
3
1. LDA, THF, −78 °C
2. ZnBr2
Ph
Ph
COOEt
ZnBr
Pd2dba3
P(o-tolyl)3, PhI
LiAlH4
CH2OH
N
N
COOEt
N
THF
95%
43%
6
5
4
1. TFAA, THF
2. Et3N
3. NaOH
70%
Ph
THF
O
O
S
OH
Ph
H2
Cl
OH
Pd/C (10%)
N
OH
9
HO
N
ref.2d
(85%)
EtOH
94%
N
H
S
O
Ph
O
7
8
OH
(dr > 95%)
Ro 67-8867
Scheme 2 Enantioselective formal synthesis of Ro 67-8867
Marek, I.; Normant, J. J. Org. Chem. 1998, 63, 2442.
The obtention of compound 8 represents a formal synthe-
sis of Ro 67-8867 as its transformation to Ro 67-8867 was
achieved in one step by treatment with sulfone 92d
(Scheme 2).
(e) Karoyan, P.; Chassaing, G. Tetrahedron Lett. 2002, 43,
253. (f) Karoyan, P.; Chassaing, G. Tetrahedron Lett. 2002,
43, 1221. (g) Karoyan, P.; Quancard, J.; Vaissermann, J.;
Chassaing, G. J. Org. Chem. 2003, 68, 2256. (h) Quancard,
J.; Magellan, H.; Lavielle, S.; Chassaing, G.; Karoyan, P.
Tetrahedron Lett. 2004, 45, 2185. (i) Quancard, J.;
Labonne, A.; Jacquot, Y.; Chassaing, G.; Lavielle, S.;
Karoyan, P. J. Org. Chem. 2004, 69, 7940.
Ro 67-8867 can be obtained in 7 steps with an overall
yield of 11%.
(4) For comprehensive reviews, see: (a) Cossy, J.; Gomez
Pardo, D. Chemtracts 2002, 15, 579. (b) Cossy, J.; Gomez
Pardo, D. Targets in Heterocyclic Systems 2002, 6, 1.
(5) Analytical Data.
Acknowledgment
Johnson & Johnson is greatly acknowledged for financial support
(Focus Giving Program to J. Cossy).
Compound 5: [a]D20 +39.2 (c 1.4, CHCl3). IR (neat): 2962,
1724, 1491, 1450, 1371, 1160, 1089, 1026, 769, 740, 706
cm–1. 1H NMR: d = 7.23–7.02 (m, 10 H), 4.06 (m, 2 H), 3.64
(q, J = 6.8 Hz, 1 H), 3.36 (d, J = 7.9 Hz, 1 H), 2.97 (dt,
J = 8.3, 3.4 Hz, 1 H), 2.80–2.69 (m, 2 H), 2.54 (m, 1 H), 2.23
(dd, J = 13.2, 10.6 Hz, 1 H), 1.75–1.61 (m, 2 H), 1.29 (d,
J = 6.8 Hz, 3 H), 1.15 (t, J = 7.2 Hz, 3 H). 13C NMR:
d = 173.4 (s), 144.5 (s), 140.5 (s), 128.6 (d), 128.3 (d), 128.2
(d), 127.5 (d), 127.1 (d), 126.0 (d), 66.7 (d), 61.8 (d), 59.9 (t),
50.2 (t), 43.7 (d), 37.1 (t), 29.7 (t), 22.7 (q), 14.3 (q). MS
(EI): m/z (relative intensity) = 337 (1) [M+], 265 (23), 264
(100), 143 (4), 106 (5), 105 (56), 104 (3), 103 (6), 91 (19),
79 (7), 77 (6), 68 (5).
References
(1) (a) Grauert, M.; Bechtel, W. D.; Ensinger, H. A.; Merz, H.;
Carter, A. J. J. Med. Chem. 1997, 40, 2922.
(b) Guzikowski, A. P.; Whittemore, E. R.; Woodward, R.
M.; Weber, E.; Keana, J. F. W. J. Med. Chem. 1997, 40,
2424. (c) Gee, K. R.; Niu, L.; Schaper, K.; Jayaraman, V.;
Hess, G. Biochemistry 1999, 38, 3140.
(2) (a) Alanine, A.; Burner, S.; Buettelmann, B.; Heitz Neidhart,
M.-P.; Jaeschke, G.; Pinard, E.; Wyler, R. WO 0075109,
2000; Chem. Abstr. 2000, 134, 42064. (b) Crameri, Y.;
Scalone, M.; Waldmeier, P.; Widmer, U. EP 1136475, 2001;
Chem. Abstr. 2001, 135, 272882. (c) Alanine, A.;
Buettelmann, B.; Fisher, H.; Huwyler, J.; Heitz Neidhart,
M.-P.; Jaeschke, G.; Pinard, E.; Wyler, R. WO 0216321,
2002; Chem. Abstr. 2002, 136, 216649. (d) Scalone, M.;
Waldmeier, P. Org. Process Res. Dev. 2003, 7, 418.
(3) (a) Karoyan, P.; Chassaing, G. Tetrahedron Lett. 1997, 38,
85. (b) Lorthiois, E.; Marek, I.; Normant, J. Tetrahedron
Lett. 1997, 38, 89. (c) Karoyan, P.; Chassaing, G.
(6) Compound 5 was the only product detected by 1H NMR and
GC-MS.
(7) Analytical Data.
Compound 6: [a]D20 +8.6 (c 4.3, CHCl3). IR (neat): 3420,
3015, 2920, 1600, 1485, 1445, 1370, 1310, 1155, 1080,
1025, 765, 745, 705, 700 cm–1. 1H NMR: d = 7.28–7.14 (m,
7 H), 7.13–7.05 (m, 3 H), 3.72 (q, J = 6.8 Hz, 1 H), 3.54 (dd,
J = 10.9, 3.02 Hz, 1 H), 3.46 (dd, J = 11.1, 4.1 Hz, 1 H), 3.04
(m, 1 H), 2.86–2.73 (m, 2 H), 2.60 (m, 1 H), 2.32–2.15 (m,
2 H), 1.54–1.40 (m, 2 H), 1.36 (d, J = 6.8 Hz, 3 H).
Tetrahedron: Asymmetry 1997, 8, 2025. (d) Lorthiois, E.;
Synlett 2005, No. 7, 1170–1172 © Thieme Stuttgart · New York