Alba E. Dꢀaz-ꢁlvarez et al.
COMMUNICATIONS
971–983; d) W. Tam, N. Cockburn, Synlett 2010, 1170–
1189.
General Procedure for the Catalytic Synthesis of 7-
Oxanorbornadienes from (Z)-Enynols and Alkynes
[6] See, for example: a) G. C. Bazan, J. H. Oskam, H.-N.
Cho, L. Y. Park, R. R. Schrock, J. Am. Chem. Soc.
1991, 113, 6899–6907; b) J. G. Hamilton, J. J. Rooney,
D. G. Snowden, Makromol. Chem. Phys. 1995, 196,
1031–1042; c) B. M. Novak, A. L. Safir, Polym. Prepr.
1996, 37, 335–336; d) M. R. Buchmeiser, G. K. Bonn,
PCT Int. Appl. WO9827423, 1998; e) L. Delaude, A.
Demonceau, A. F. Noels, Macromolecules 1999, 32,
2091–2103; f) V. Amir-Ebrahimi, D. A. Corry, J. G.
Hamilton, J. M. Thompson, J. J. Rooney, Macromole-
cules 2000, 33, 717–724; g) V. Amir-Ebrahimi, J. J.
Rooney, J. Mol. Catal. A: Chem. 2004, 212, 107–113.
[7] See, for example: a) B. H. Lipshutz, Chem. Rev. 1986,
86, 795–819; b) F. Fringuelli, A. Taticchi, in: The
Diels–Alder Reaction: Selected Practical Methods, John
Wiley & Sons, West Sussex, 2002; c) D. Heber, P.
Rçsner, W. Tochtermann, Eur. J. Org. Chem. 2005,
4231–4247.
The corresponding (Z)-enynol 1 (5 mmol), the appropriate
alkyne
3
(6.5 mmol) and [{IrACHTGUNTRENNU(G m-Cl)ACHTUGNRTEN(NUNG COD)}2] (17 mg,
0.025 mmol) were introduced into a sealed tube under a ni-
trogen atmosphere. The resulting solution was then stirred
at room temperature (1a, b, d, f, g), or heated at 808C in an
oil bath (1i), for the indicated time (see Table 3; the course
of the reaction was monitored by regular sampling and anal-
ysis by TLC). The residue was then purified by column
chromatography on silica gel, using a mixture of hexanes/di-
ethyl ether (90:10) as eluent, to give 7-oxanorbornadienes 4;
yields: 60–88%. Characterization data, as well as copies of
1
the H and 13C{1H} NMR spectra, of all the bicycles synthe-
sized can be found in the Supporting Information.
Acknowledgements
[8] For recent reviews, accounts, and highlights dealing
with the synthesis of furans, see: a) X. L. Hou, H. Y.
Cheung, T. Y. Hon, P. L. Kwan, T. H. Lo, S. Y. Tong,
H. N. C. Wong, Tetrahedron 1998, 54, 1955–2020;
b) B. A. Keay, Chem. Soc. Rev. 1999, 28, 209–215;
c) A. Jeevanandam, A. Ghule, Y.-C. Ling, Curr. Org.
Chem. 2002, 6, 841–864; d) R. C. D. Brown, Angew.
Chem. 2005, 117, 872–874; Angew. Chem. Int. Ed.
2005, 44, 850–852; e) S. F. Kirsch, Org. Biomol. Chem.
2006, 4, 2076–2080; f) D. M. DꢈSouza, T. J. J. Mꢇller,
Chem. Soc. Rev. 2007, 36, 1095–1108; g) N. T. Patil, Y.
Yamamoto, ARKIVOC 2007, 10, 121–141; h) G.
Balme, D. Bouyssi, N. Monteiro, Heterocycles 2007, 73,
87–124; i) V. Cadierno, P. Crochet, Curr. Org. Synth.
2008, 5, 343–364; j) X.-L. Hou, Z. Yang, K.-S. Yeung,
H. N. C. Wong, Prog. Heterocycl. Chem. 2009, 21, 179–
223.
Financial support from the Spanish MICINN (Projects
CTQ2006-08485/BQU and Consolider Ingenio 2010
CSD2007-00006) and the Gobierno del Principado de Astu-
rias (FICYT Project IB08-036) is acknowledged.
References
[1] See, for example: a) L. F. Tietze, Chem. Rev. 1996, 96,
115–136; b) S. F. Mayer, W. Kroutil, K. Faber, Chem.
Soc. Rev. 2001, 30, 332–339; c) J. M. Lee, Y. Na, H.
Han, S. Chang, Chem. Soc. Rev. 2004, 33, 302–312.
[2] The concept of atom-economy has emerged as one of
the major driving forces of modern chemistry: a) B. M.
Trost, Science 1991, 254, 1471–1477; b) B. M. Trost,
Angew. Chem. 1995, 107, 285–307; Angew. Chem. Int.
Ed. Engl. 1995, 34, 259–281; c) R. A. Sheldon, Pure
Appl. Chem. 2000, 72, 1233–1246; d) B. M. Trost, Acc.
Chem. Res. 2002, 35, 695–705; e) B. M. Trost, M. U.
Frederiksen, M. T. Rudd, Angew. Chem. 2005, 117,
6788–6825; Angew. Chem. Int. Ed. 2005, 44, 6630–
6666.
[3] See, for example: a) G. A. Molander, C. R. Harris,
Chem. Rev. 1996, 96, 307–338; b) P. Eilbracht, L. Bꢆr-
facker, C. Buss, C. Hollmann, E. Kitsos-Rzychon, C. L.
Kranemann, T. Rische, R. Roggenbuck, A. Schmidt,
Chem. Rev. 1999, 99, 3329–3336; c) G. Poli, G. Giam-
bastiani, A. Heumann, Tetrahedron 2000, 56, 5959–
5989; d) S.-I. Ikeda, Acc. Chem. Res. 2000, 33, 511–
519; e) J.-C. Wasilke, S. J. Obrey, R. T. Baker, G. C.
Bazan, Chem. Rev. 2005, 105, 1001–1020; f) Metal Cat-
alyzed Cascade Reactions, (Ed.: T. J. J. Mꢇller), Spring-
er Verlag, Berlin, 2006.
[9] For representative examples, see: a) D. Vꢃgh, P. Zalup-
ˇ
sky, J. Kovꢂc, Synth. Commun. 1990, 20, 1113–1123;
b) B. Seiller, C. Bruneau, P. H. Dixneuf, Tetrahedron
1995, 51, 13089–13102; c) J. A. Marshall, C. A. Sehon,
J. Org. Chem. 1995, 60, 5966–5968; d) B. C¸ etinkaya, I.
ꢉzdemir, C. Bruneau, P. H. Dixneuf, J. Mol. Catal. A:
Chem. 1997, 118, L1–L4; e) B. Gabriele, G. Salerno, E.
Lauria, J. Org. Chem. 1999, 64, 7687–7692; f) A. S. K.
Hashmi, L. Schwarz, J.-H. Choi, T. M. Frost, Angew.
Chem. 2000, 112, 2382–2385; Angew. Chem. Int. Ed.
2000, 39, 2285–2288; g) B. C¸ etinkaya, I. ꢉzdemir, C.
Bruneau, P. H. Dixneuf, Eur. J. Inorg. Chem. 2000, 29–
32; h) S. Elgafi, L. D. Field, B. A. Messerle, J. Organo-
met. Chem. 2000, 607, 97–104; i) P. Pale, J. Chuche,
Eur. J. Org. Chem. 2000, 1019–1025; j) I. ꢉzdemir, B.
˘
Yigit, B. C¸ etinkaya, D. ꢊlkꢇ, M. N. Tahir, C. Arıcı, J.
Organomet. Chem. 2001, 633, 27–32; k) B. C¸ etinkaya,
N. Gꢇrbꢇz, T. SeÅkin, I. ꢉzdemir, J. Mol. Catal. A:
Chem. 2002, 184, 31–38; l) Y. Liu, F. Song, Z. Song, M.
Liu, B. Yan, Org. Lett. 2005, 7, 5409–5412; m) A. E.
Dꢀaz-ꢁlvarez, P. Crochet, M. Zablocka, C. Duhayon, V.
Cadierno, J. Gimeno, J. P. Majoral, Adv. Synth. Catal.
2006, 348, 1671–1679; n) V. Cadierno, J. Dꢀez, J.
Garcꢀa-ꢁlvarez, J. Gimeno, N. Nebra, J. Rubio-Garcꢀa,
Dalton Trans. 2006, 5593–5604; o) J. Albers, V. Cadier-
[4] For a highly informative review on tandem catalysis,
see: D. E. Fogg, E. N. dos Santos, Coord. Chem. Rev.
2004, 248, 2365–2379.
[5] For reviews, see: a) M. Lautens, W. Tam, Adv. Met.-
Org. Chem. 1998, 6, 49–101; b) M. Lautens, K. Fagnou,
S. Hiebert, Acc. Chem. Res. 2003, 36, 48–58; c) D. K.
Rayabarapu, C.-H. Cheng, Acc. Chem. Res. 2007, 40,
2430
ꢅ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Adv. Synth. Catal. 2010, 352, 2427 – 2431