Scheme 1
Figure 1. Molecular appoaches toward BODIPY dyes with longer
absorption and emission.
including luminescent devices,2 chemical sensors,3 biologi-
cal labeling,4 and photovoltaic devices.5 BODIPY chro-
mophores generally possess visible absorption and
fluorescent emission located between 470 and 550 nm.
Considering the increasing interest in the preparation of
near-infrared (NIR) absorption as well as NIR emission
dyes,6 promotion of the absorption and emission of a BOD-
IPY dye to the far-red and even to the NIR spectral region by
structural modifications is crucial and necessary. As shown in
Figure 1, such modifications currently include (a) extension of
π-conjugation by fusing a rigid ring to the pyrrole unit,7 (b)
functionalization at the R- and/or meso-position to generate a
“push-pull” motif,8 and (c) replacement of the 8-carbon atom
with a nitrogen atom to form aza-BODIPY dyes.9
The fusion of polycyclic aromatic compounds to por-
phyrin cores has recently attracted considerable interest,10
and these fused hybrid molecules usually show intensified
NIR absorption and in some cases also exhibit moderate
NIR emission.10h BODIPY dye, porphyrin’s little sister,
provides a nice “zig-zag” geometry for fusion of an aromatic
unit to the meso- and β-positions (method (d), Figure 1).
Such a fusion is beneficial to the bathochromic shift of the
absorption and emission to a far-red and NIR spectral
region. Despite the structural similarities between BODIPY
and porphyrin, fusion of a polycyclic aromatic compound
onto the zig-zag edge (i.e., meso- and β-positions) of a
BODIPY core, to the best of our knowledge, has never been
reported. Herein, we report the first example of polycyclic
aromatic unit fused BODIPY 1b (Scheme 1) which exhibits
an intensified NIR absorption and acceptable NIR emission.
The N-annulated perylene-fused BODIPY 1b was
synthesized as shown in Scheme 1. Initially, we attempted
to prepare its analog 1a in which two ethyl groups are
attached to the R-positions of the BODIPY core. The
perylene aldehyde 3 was first prepared in 46% yield by
lithiation of monobrominated N-annulated perylene 211
followed by reaction with anhydrous DMF. Acid-cata-
lyzed condensation of the obtained aldehyde 3 with 2 equiv
of 2-ethyl pyrrole 4a led to the corresponding dipyrro-
methane derivative in good yield. Due to high reactivity,
this dipyrromethane was used for the next step without
further purification. Subsequent oxidation by 2,3-dichloro-
5,6-dicyano-1,4-benzoquinone (DDQ) and complexation
(7) (a) Wada, M.; Ito, S.; Uno, H.; Murashima, T.; Ono, N.; Urano,
€
T.; Urano, Y. Tetrahedron Lett. 2001, 42, 6711–6713. (b) Shen, Z.; Rohr,
with BF3 OEt2 afforded the N-annulated perylene-BODIPY
3
H.; Rurack, K.; Uno, H.; Spieles, M.; Schulz, B.; Reck, G.; Ono, N. Chem.;
Eur. J. 2004, 10, 4853–4871. (c) Jiao, L.; Yu, C.; Liu, M.; Wu, Y.; Cong, K.;
Meng, T.; Wang, Y.; Hao, E. J. Org. Chem. 2010, 75, 6035–6038.
(8) For selected references, see: (a) Burghart, A.; Kim, H.; Welch,
M. B.; Thoresen, L. H.; Reibenspies, J.; Burgess, K.; Bergstrorm, F.;
Johansson, L. B. A. J. Org. Chem. 1999, 64, 7813–7819. (b) Yu, Y.-H.;
dyad 5a with an overall yield of 19% in three steps.
Iron(III) chloride, a well-known mild oxidant, has proven
to be effective to promote cyclodehydrogenation of many
branched oligophenylenes into polycyclic aromatic hydro-
carbons.12 Herein, intramolecular ring fusion of 5a by
using 2 equiv of FeCl3 as an oxidant yielded a mixture
with a longer absorption between 600 and 800 nm, indicat-
ing formation of the desired ring-fused product 1a. How-
ever, separation of this mixture turned out to be extremely
difficult due to strong aggregation of the products in both
the solid state and solution, despite the presence of bulky
4-tert-butylphenyl and branched aliphatic chains attached
to the N-annulated perylene unit. Such a troublesome
problem was also observed for aromatic ring-fused por-
phyrin systems, which can be somewhat alleviated by the
€
Descalzo, A. B.; Shen, Z.; Rohr, H.; Liu, Q.; Wang, Y.-W.; Spieles, M.; Li,
Y.-Z.; Rurack, K.; You, X.-Z. Chem.;Asian J. 2006, 1, 176–187. (c)
Rohand, T.; Baruah, M.; Qin, W.; Boens, N.; Dehaen, W. Chem. Commun.
2006, 266–268. (d) Baruah, M.; Qin, W.; VallQe, R. A. L.; Beljonne, D.;
Rohand, T.; Dehaen, W.; Boens, N. Org. Lett. 2005, 7, 4377–4380.
(9) (a) Zhao, W.; Carreira, E. M. Angew. Chem., Int. Ed. 2005, 44,
1677–1679. (b) Zhao, W.; Carreira, E. M. Chem.;Eur. J. 2006, 12, 7254–
7263. (c) McDonnell, S. O.; O'Shea, D. F. Org. Lett. 2006, 8, 3493–3496.
(10) (a) Gill, H. S.; Marmjanz, M.; Santamarıa, J.; Finger, I.; Scott,
´
M. J. Angew. Chem., Int. Ed. 2004, 43, 485–490. (b) Yamane, O.; Sugiura,
K.; Miyasaka, H.; Nakamura, K.; Fujimoto, T.; Nakamura, K.; Kaneda, T.;
Sakata, Y.; Yamashita, M. Chem. Lett. 2004, 33, 40–41. (c) Kurotobi, K.;
Kim, K. S.; Noh, S. B.; Kim, D.; Osuka, A. Angew. Chem., Int. Ed. 2006, 45,
3944–3947. (d) Tanaka, M.; Hayashi, S.; Eu, S.; Umeyama, T.; Matano, Y.;
Imahori, H. Chem. Commun. 2007, 2069–2071. (e) Tokuji, S.; Takahashi, Y.;
Shinmori, H.; Shinokubo, H.; Osuka, A. Chem. Commun. 2009, 1028–1030.
(f) Davis, N. K. S.; Thompson, A. L.; Anderson, H. L. Org. Lett. 2010, 12,
2124–2127. (g) Diev, V. V.; Hanson, K.; Zimmerman, J. D.; Forrest, S. R.;
Thompson, M. E. Angew. Chem., Int. Ed. 2010, 49, 5523–5526. (h) Jiao, C.;
Huang, K.-W.; Guan, Z.; Xu, Q.-H.; Wu, J. Org. Lett. 2010, 12, 4046–4049.
(11) Jiao, C.; Huang, K.-W.; Luo, J.; Zhang, K.; Chi, C.; Wu, J. Org.
Lett. 2009, 11, 4508–4511.
€
(12) Wu, J.; Pisula, W.; Mullen, K. Chem. Rev. 2007, 107, 718–747.
Org. Lett., Vol. 13, No. 4, 2011
633