F
Y. Wang et al.
Letter
Synlett
(4) Li, Y.; Ding, Y.; Wang, J.; Su, Y.; Wang, X. Org. Lett. 2013, 15,
2574.
(5) (a) Wang, Y.; Gulevich, A. V.; Gevorgyan, V. Chem. Eur. J. 2013,
19, 15836. (b) Gallardo-Donaire, J.; Martin, R. J. Am. Chem. Soc.
2013, 135, 9350.
(6) Dai, J.; Xu, W.; Wu, Y.; Zhang, W.; Gong, Y.; He, X.; Zhang, X.; Xu,
H. J. Org. Chem. 2015, 80, 911.
(7) Wang, X.; Gallardo-Donaire, J.; Martin, R. Angew. Chem. Int. Ed.
2014, 53, 11084.
(8) (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev.
2013, 113, 5322. (b) Romero, N. A.; Nicewicz, D. A. Chem. Rev.
2016, 116, 10075. (c) Chen, J.; Hu, X.; Lu, L.; Xiao, W. Acc. Chem.
Res. 2016, 49, 1911. (d) Xi, Y.; Yi, H.; Lei, A. Org. Biomol. Chem.
2013, 11, 2387. (e) Ghosh, I.; Marzo, L.; Das, A.; Shaikh, R.;
Kö nig, B. Acc. Chem. Res. 2016, 49, 1566. (f) Gandeepan, P.;
Koeller, J.; Korvorapun, K.; Mohr, J.; Ackermann, L. Angew. Chem.
Int. Ed. 2019, 58, 9820. (g) Liang, X.; Niu, L.; Wang, S.; Liu, J.; Lei,
A. Org. Lett. 2019, 21, 2441. (h) Liang, Y.; Steinbock, R.; Yang, L.;
Ackermann, L. Angew. Chem. Int. Ed. 2018, 57, 10625. (i) Chen,
X.; Tan, Z.; Gui, Q.; Hu, L.; Liu, J.; Wu, J.; Wang, G. Chem. Eur. J.
2016, 22, 6218. (j) Ziegler, D. T.; Choi, J.; Muñ oz-Molina, J.;
Bissember, A. C.; Peters, J. C.; Fu, G. C. J. Am. Chem. Soc. 2013,
135, 13107. (k) Zhang, Y.; Chen, W.; Wang, L.; Li, P. Org. Chem.
Front. 2018, 5, 3562.
(9) (a) Gao, X.; Meng, Q.; Li, J.; Zhong, J.; Lei, T.; Li, X.; Tung, C.; Wu,
L. ACS Catal. 2015, 5, 2391. (b) Wang, C.; Zheng, Y.; Huo, H.;
Röse, P.; Zhang, L.; Harms, K.; Hilt, G.; Meggers, E. Chem. Eur. J.
2015, 21, 7355. (c) Narayanam, J. M. R.; Stephenson, C. R. J.
Chem. Soc. Rev. 2011, 40, 102. (d) Yu, H.; Liu, C.; Dai, X.; Wang, J.;
Qiu, J. Tetrahedron 2017, 73, 3031.
(10) Ramirez, N. P.; Bosque, I.; Gonzalez-Gomez, J. C. Org. Lett. 2015,
17, 4550.
(11) Metternich, J. B.; Gilmour, R. J. Am. Chem. Soc. 2016, 138, 1040.
(12) Morack, T.; Metternich, J. B.; Gilmour, R. Org. Lett. 2018, 20,
1316.
(13) (a) Shao, A.; Zhan, J.; Li, N.; Chiang, C.; Lei, A. J. Org. Chem. 2018,
83, 3582. (b) Yang, Q.; Jia, Z.; Li, L.; Zhang, L.; Luo, S. Org. Chem.
Front. 2018, 5, 237. (c) Zhang, M.; Ruzi, R.; Li, N.; Xie, J.; Zhu, C.
Org. Chem. Front. 2018, 5, 749.
(14) (a) Zhang, S.; Li, L.; Wang, H.; Li, Q.; Liu, W.; Xu, K.; Zeng, C. Org.
Lett. 2018, 20, 252. (b) Tao, X.; Dai, J.; Zhou, J.; Xu, J.; Xu, H.
Chem. Eur. J. 2018, 24, 6932. (c) Li, L.; Yang, Q.; Jia, Z.; Luo, S. Syn-
thesis 2018, 50, 2924.
(15) (a) Walker, D.; Hiebert, J. D. Chem. Rev. 1967, 67, 153. (b) Zhai,
L.; Shukla, R.; Rathore, R. Org. Lett. 2009, 11, 3474. (c) Zhai, L.;
Shukla, R.; Wadumethrige, S. H.; Rathore, R. J. Org. Chem. 2010,
75, 4748. (d) Zhang, Q.; Yang, F.; Wu, Y. Org. Chem. Front. 2014,
1, 694. (e) Kucklaender, U.; Bollig, R.; Frank, W.; Gratz, A.; Jose, J.
Bioorg. Med. Chem. 2011, 19, 2666. (f) Batista, V. S.; Crabtree, R.
H.; Konezny, S. J.; Luca, O. R.; Praetorius, J. M. New J. Chem. 2012,
36, 1141. (g) Zha, G.; Bare, G. A. L.; Leng, J.; Shang, Z.; Luo, Z.;
Qin, H. Adv. Synth. Catal. 2017, 359, 3237. (h) Cheng, M.; Lei, J.;
Xie, C. Synlett 2019, 30, 114. (i) Zhang, Y.; Chen, W.; Wang, L.; Li,
P. Org. Chem. Front. 2018, 5, 3562. (j) Li, C.; Li, J.; Tan, C.; Wu, W.;
Jiang, H. Org. Chem. Front. 2018, 5, 3158. (k) Das, S.; Natarajan,
P.; König, B. Chem. Eur. J. 2017, 23, 18161. (l) Chen, Q.; Wen, C.;
Wang, X.; Yu, G.; Ou, Y.; Huo, Y.; Zhang, K. Adv. Synth. Catal.
2018, 360, 3590.
(16) (a) Wendlandt, A. E.; Stahl, S. S. Angew. Chem. Int. Ed. 2015, 54,
14638. (b) Colucci, M. A.; Moody, C. J.; Couch, G. D. Org. Biomol.
Chem. 2008, 6, 637. (c) Ruchardt, C.; Gerst, M.; Ebenhoch, J.
Angew. Chem. Int. Ed. 1997, 36, 1406. (d) Zhu, X. Q.; Wang, C. H.
J. Org. Chem. 2010, 75, 5037. (e) Jung, H. H.; Floreancig, P. E. Tet-
rahedron 2009, 65, 10830.
(17) (a) Rusch, F.; Schober, J.; Brasholz, M. ChemCatChem 2016, 8,
2881. (b) Ohkubo, K.; Fujimoto, A.; Fukuzumi, S. J. Am. Chem.
Soc. 2013, 135, 5368.
(18) Shen, Z.; Dai, J.; Xiong, J.; He, X.; Mo, W.; Hu, B.; Sun, N.; Hu, X.
Adv. Synth. Catal. 2011, 353, 3031.
(19) (a) Shen, Z.; Sheng, L.; Zhang, X.; Mo, W.; Hu, B.; Sun, N.; Hu, X.
Tetrahedron Lett. 2013, 54, 1579. (b) Ma, J. Q.; Hu, Z. M.; Li, M. C.;
Zhao, W. J.; Hu, X. Q.; Mo, W. M.; Hu, B. X.; Sun, N.; Shen, Z. L.
Tetrahedron 2015, 71, 6733. (c) Song, C.; Yi, H.; Dou, B.; Li, Y.;
Singh, A. K.; Lei, A. Chem. Commun. 2017, 53, 3689. (d) Song, C.;
Dong, X.; Yi, H.; Chiang, C.; Lei, A. ACS Catal. 2018, 8, 2195.
(e) Pan, D.; Wang, Y.; Li, M.; Hu, X.; Sun, N.; Jin, L.; Hu, B.; Shen,
Z. Synlett 2019, 30, 218. (f) Pan, D.; Pan, Z.; Hu, Z.; Li, M.; Hu, X.;
Jin, L.; Sun, N.; Hu, B.; Shen, Z. Eur. J. Org. Chem. 2019, 5650.
(20) 6H-Benzo[c]chromen-6-one (2a); Typical Procedure
To a 35-mL tube equipped with a magnetic stir bar, were added
2-phenylbenzoic acid (1a) (99 mg, 0.5 mmol), DDQ (5.7 mg, 5
mol%) and DCE (4.0 mL). After the air in the tube had been
replaced with O2, TBN (3 L, 5 mol%) was added quickly and the
tube was sealed. The tube was then placed in a dark box and
illuminated with an 18 W blue LED. The reaction mixture was
stirred until the reaction had finished (TLC monitoring). The
reaction mixture was then concentrated on a rotary evaporator
and the residue was purified by column chromatography (silica
gel, PE/EtOAc, 50:1) to afford 2a (97 mg, 99%) as a white solid;
mp 93–94 °C. 1H NMR (500 MHz, CDCl3): = 8.38 (d, J = 7.9 Hz, 1
H), 8.10 (d, J = 7.8 Hz, 1 H), 8.04 (d, J = 8.1 Hz, 1 H), 7.81 (t, J = 7.3
Hz, 1 H), 7.56 (t, J = 7.4 Hz, 1 H), 7.46 (dt, J = 7.7 Hz, 1.1 Hz, 1 H),
7.36–7.30 (m, 2 H). 13C NMR (125 MHz, CDCl3): = 161.2, 151.3,
134.9, 134.8, 130.6, 130.5, 128.9, 124.6, 122.8, 121.7, 121.3,
118.1, 117.8. MS (EI): m/z (%) = 196.08 (100%) [M]+.
(21) (a) Teske, J. A.; Deiters, A. Org. Lett. 2008, 10, 2195. (b) Meltzer,
P. C.; Dalzell, H. C.; Razdan, R. K. Synthesis 1981, 985.
(c) Nandaluru, P. R.; Bodwell, G. J. Org. Lett. 2012, 14, 310.
(22) Guo, X. W.; Zipse, H.; Mayr, H. J. Am. Chem. Soc. 2014, 136,
13863.
© 2019. Thieme. All rights reserved. Synlett 2019, 30, A–F