vacuum. DBU (5 eq) and 2-mercaptoethanol (10 eq) are added
to pre-swelled resin (containing 14) in DMF under nitrogen
atmosphere. The reaction mixture is then subjected to microwave
irradiation at 50 ◦C for 5 min. The resin (containing 7) is washed
with DMF (¥3) and DCM (¥3), dried under vacuum. In a separate
flask Fmoc amino acid (10 eq), triphosgene (3.3 eq) and enough
THF are mixed to maintain a triphosgene concentration of 0.15 M;
2,4,6-collidine (28 eq) is added, and the resulting solution is
introduced to the resin (containing 7). The mixture is irradiated
under microwaves at 45 ◦C for 30 min. The coupling step is
repeated twice. The resin (containing 8) is washed with DCM (¥5),
and the Fmoc group is removed with 20% piperidine in DMF. The
desired Fmoc amino acid residue and 4-pentenoic acid are coupled
using standard peptide synthesis methodology as described in
the Supplementary Information. Ring-closing metathesis on bis-
olefin is performed with Hoveyda–Grubbs II catalyst (20 mol%) in
dichloroethane under microwave irradiation at 120 ◦C for 10 min
as described.5
CHE-0234863, and the NCRR/NIH for Research Facilities
Improvement Grant C06 RR-16572.
References
1 (a) L. K. Henchey, A. L. Jochim and P. S. Arora, Curr. Opin. Chem.
Biol., 2008, 12, 692–697; (b) J. M. Davis, L. K. Tsou and A. D. Hamilton,
Chem. Soc. Rev., 2007, 36, 326–334; (c) J. Garner and M. M. Harding,
Org. Biomol. Chem., 2007, 5, 3577–3585.
2 A. Patgiri, A. L. Jochim and P. S. Arora, Acc. Chem. Res., 2008, 41,
1289–1300.
3 J. Liu, D. Wang, Q. Zheng, M. Lu and P. S. Arora, J. Am. Chem. Soc.,
2008, 130, 4334–4337.
4 (a) L. K. Henchey, S. Kushal, R. Dubey, R. N. Chapman, B. Z. Olenyuk
and P. S. Arora, J. Am. Chem. Soc., 2010, 132, 941–943; (b) D. Wang,
M. Lu and P. S. Arora, Angew. Chem., Int. Ed., 2008, 47, 1879–1882;
(c) D. Wang, W. Liao and P. S. Arora, Angew. Chem., Int. Ed., 2005, 44,
6525–6529.
5 (a) R. N. Chapman and P. S. Arora, Org. Lett., 2006, 8, 5825–5828;
(b) G. Dimartino, D. Wang, R. N. Chapman and P. S. Arora, Org.
Lett., 2005, 7, 2389–2392.
6 T. Kan and T. Fukuyama, Chem. Commun., 2004, 353–
359.
7 R. N. Chapman, G. Dimartino and P. S. Arora, J. Am. Chem. Soc.,
2004, 126, 12252–12253.
8 S. C. Miller and T. S. Scanlan, J. Am. Chem. Soc., 1998, 120, 2690–
2691.
Representative synthesis of N-allylglycine peptides (Scheme 3)
A solution of bromoacetic acid (20 eq) with DIC (20 eq) and HOAt
(10 eq) in DMF is added to pre-swelled resin, and shaken for 2 h.
The resin is washed sequentially with DMF (¥3), DCM (¥3) and
DMF (¥3). Resin is re-suspended in 1 M allylamine (20 eq) in
DMF and shaken for 20 min. The resin (containing 15) is washed
with DMF (¥3), methanol (¥3) and DCM (¥3), and treated with
the desired Fmoc amino acid (20 eq), DIC (20 eq) and HOAt (10
eq) in DMF under microwave irradiation for 30 min at 60 ◦C.
The resin is washed with DMF (¥3), DCM (¥3), DMF (¥3), and
coupled with the desired Fmoc amino acid residue and 4-pentenoic
acid using standard peptide synthesis methodology as described
in the Supplementary Information. Ring-closing metathesis on
bis-olefin 10 is performed with Hoveyda–Grubbs II catalyst (20
9 T. Fukuyama, C.-K. Jow and M. Cheung, Tetrahedron Lett., 1995, 36,
6373–6374.
10 The microwave reactions were performed in the CEM Discover single-
mode reactor with controlled power, temperature, and time settings.
11 Abbreviations used: DAST, (diethylamino)sulfur trifluoride; DIC,
diisopropylcarbodiimide; HBTU, (2-(1H-benzotriazole-1-yl)-1,1,3,3-
tetramethyluronium hexafluorophosphate); HOAt, N-hydroxy-7-
azabenzotriazole; PyBOP, Benzotriazole-1-yl-oxy-tris-pyrrolidino-
phosphonium hexafluorophosphate; PyBrOP, bromotripyrrolidino-
phosphonium hexafluorophosphate; TBTU, 2-(1H-benzotriazole-
1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate; TFFH, tetra-
methylfluoroformamidinium hexafluorophosphate.
12 L. A. Carpino, M. Beyermann, H. Wenschuh and M. Bienert, Acc.
Chem. Res., 1996, 29, 268–274.
◦
13 L. A. Carpino, J. Am. Chem. Soc., 1993, 115, 4397–4398.
14 E. Frerot, J. Coste, A. Pantaloni, M. N. Dufour and P. Jouin,
Tetrahedron, 1991, 47, 259–270.
mol%) in dichloroethane under microwave irradiation at 120 C
for 10 min as described.5
15 (a) W. Su, S. J. Gray, R. Dondi and G. A. Burley, Org. Lett., 2009, 11,
3910–3913; (b) B. Thern, J. Rudolph and G. Jung, Angew. Chem., Int.
Ed., 2002, 41, 2307–2309; (c) E. Falb, T. Yechezkel, Y. Salitra and C.
Gilon, J. Pept. Res., 1999, 53, 507–517.
16 G. M. Figliozzi, R. Goldsmith, S. C. Ng, S. C. Banville and R. N.
Zuckermann, Methods Enzymol., 1996, 267, 437–447.
Acknowledgements
We are grateful for financial support from the NIH (GM073943).
We thank the NSF for equipment Grants MRI-0116222 and
1776 | Org. Biomol. Chem., 2010, 8, 1773–1776
This journal is
The Royal Society of Chemistry 2010
©