μ2ꢀSꢀ[Bis(benzenethiolato)tetranitrosyldiiron]
Russ.Chem.Bull., Int.Ed., Vol. 59, No. 6, June, 2010
1135
complex with two sulfurꢀcontaining ligands34 also indiꢀ
cates that the mononuclear complex should be less stable
than the dinuclear complex. This result is in qualitative
agreement with the observed induction period for the elimꢀ
ination of NO.
3. L. Liu, M. ХuꢀWelliver, S. Kanagula, H. E. Pegg, Canser
Res., 2002, 62, 3037.
4. N. P. Konovalova, S. A. Goncharova, L. M. Volkova, T. A.
Raevskaya, L. T. Eremenko, A. M. Korolev, Nitric Oxide:
Biol. Chem., 2003, 8, 59.
5. W. Yang, P. A. Rogers, H. Ding, J. Biol. Chem., 2002, 277,
12868.
6. O. Siri, A. Tabard, P. Pullumbi, R. Guilard, Inorg. Chim.
Acta, 2003, 350, 633.
–
The mass spectra show an intense peak of the FeO3
ion. To elucidate the nature of this species, we carried out
–
calculations of the energy of the complexes FeO3 in
different spin states and with different geometry at the
PBE/SBK level of theory. It appeared that the quartet
complex with the symmetry D3h has the lowest energy.
The Fe—O bond length in this complex is 1.643 Å. Since
only 75% of the spin density is located on the Fe atom, it
should formally be described as the FeIV complex. The
7. J. L. Burgaud, E. Jngini, P. Del Soldato, N. Y. Ann. Acad.
Sci., 2002, 962, 360.
8. T. I. Karu, L. V. Pyatibrat, G. S. Kalendo, Toxicol. Lett.,
2001, 121, 57.
9. A. R. Butler, I. I. Megson, Chem. Rev., 2002, 102, 1155.
10. A. Janczyk, A. WolnichkaꢀGlubisz, A. Chmura, M. Elas,
Z. Matuszak, G. Stochel, K. Urbanska, Nitric Oxide: Biol.
Chem., 2004, 10, 42.
–
doublet FeO3 complex has a slightly higher energy (by
1.6 kcal mol–1). The symmetry of the latter complex reꢀ
duces to C2v due to the nonꢀequivalent Fe—O bonds; two
bond lengths are 1.626 Å, and one bond length is 1.606 Å.
The energy of the quartet FeIII complex containing the
peroxo group (O—O, 1.450 Å) is substantially higher
(48.6 kcal mol–1). In this complex, there is one short
Fe—O distance (1.653 Å) and two long Fe—O distances
(1.840 Å). As mentioned above, the formation of the iron
trioxo complex can be attributed to the decomposition of
the reaction products of the mononuclear nitrosyl comꢀ
plexes with oxygen.
11. T. Thomas, J. H. Robertson, E. G. Cox, Acta Crystallogr.,
1958, 11, 599.
12. C. Glidewell, M. E. Harman, M. B. Hursthouse, I. L.
Johnson, M. Motevalli, J. Chem. Res., 1998, 212, 1676.
13. Т. C. Harrop, D. Song, S. J. Lippard, J. Am. Chem. Soc.,
2006, 128, 3528.
14. R. E. Marsh, A. L. Spek, Acta Crystallogr., Sect. B, 2001,
57, 800.
15. J. L. Bourassa, P. C. Ford, Coord. Chem. Rev., 2000,
200—202, 887.
16. N. A. Sanina, O. S. Zhukova, S. M. Aldoshin, N. S.
Emel´yanova, G. K. Gerasimova, RF Pat. No. RST/
RU2007000285, May 30, 2007 (in Russian).
Therefore, we synthesized single crystals of the diꢀ
nuclear iron benzenethiolate tetranitrosyl complex 1 and
studied its structure and its decomposition products
in solution. In the mass spectrum of a solution of 1,
the primary decomposition products of the starting
complex 1 (the complex ions [Fe(SPh)(NO)2(NO2)]–,
[Fe(SPh)2(NO)]–, and [Fe(SPh)2(NO)2]–) and a seꢀ
ries of ions that are formed in the secondary reactions
([FeO2 + n(NO)]– and [FeO3 + n(NO)]–, n = 0—4) were
identified. The Fe—NO bond dissociation and the replaceꢀ
ment of the NO ligand by aqua and oxygen ligands in
complex 1 were studied by quantum chemical modeling.
Presumably, the stronger Fe—O bond and the fact that
the oxidation of NO by oxygen is a favorable reaction are
responsible for the energetically favorable destruction of
the primary oxygen complexes giving Fe—O and Fe=O
bonds and new N—O bonds under electrospray conditions
in aerobic solutions.
17. E. V. Rudakova, M. A. Lapshina, A. A. Sivova, K. I. Zvereꢀ
va, A. A. Terent´ev, V. D. Sen´, N. A. Sanina, S. A. Aldoꢀ
shin, Tez. dokl. VII Mezhdunar. molodezh. konf. "IBKhF
RAN — VUZy" [Abstrs. of Papers, VII Inernational Youth Conꢀ
ference "IBCP RAS — Universities"] (November 2—14, 2007,
Moscow), Moscow, 2007, p. 248 (in Russian).
18. T. B. Rauchfuss, T. D. Weatherill, Inorg. Chem., 1982,
21, 827.
19. A. F. Dodonov, V. I. Kozlovski, I. V. Soulimenkov, V. V.
Raznikov, A. V. Loboda, Z. Zhou, T. Horvath, H. Wollnik,
Eur. J. Mass Spectrom., 2000, 6, 481.
20. A. Weissberger, E. Proskauer, J. A. Riddick, E. E. Toops,
Organic Solvents: Physical Properties and Methods of Purificaꢀ
tion, Interscience Publ., Inc., New York, 1955.
21. N. A. Sanina, S. M. Aldoshin, T. N. Rudneva, N. I. Goloviꢀ
na, G. V. Shilov, Yu. M. Shul´ga, V. M. Martynenko, N. S.
Ovanesyan, Koord. Khim., 2005, 31, 301 [Russ. J. Coord.
Chem. (Engl. Transl.), 2005, 31, 301].
22. A. C. T. North, D. C. Phillips, F. S. Mathews, Acta Crystalꢀ
logr., Sect. A, 1968, 24, 351.
We thank Dr. T. N. Rudneva for performing the
electrochemical experiment.
This study was financially supported by the Presidium
of the Russian Academy of Sciences (Program No. 5 "Baꢀ
sic Sciences to Medicine").
23. G. M. Sheldrick, SHELXꢀ97, Release 97ꢀ2. Program of Crystal
Structure Refinement, University of Göttingen, Germany, 1997.
24. International Tables for Crystallography, Kluwer Academic
Publishers, Dordrecht (Netherlands), 1992, vol. C.
25. C. Jinhua, M. Shaoping, H. Jinling, L. Jiaxi, Chinese J. Struct.
Chem., 1983, 2, 263; F. H. Allen, Acta Crystallogr., Sect. B,
2002, 58, 380.
26. O. A. Rakova, N. A. Sanina, G. V. Shilov, Yu. M. Shul´ga,
V. M. Martynenko, N. S. Ovanesyan, S. M. Aldoshin, Koord.
Khim., 2002, 28, 364 [Russ. J. Coord. Chem. (Engl. Transl.),
2002, 28, 341].
References
1. D. Wink, J. Vodovoz, J. Cook, Biochemistry, 1998, 63, 948.
2. B. Brune, N. Scheneiderhan, Toxicol. Lett., 2003, 193, 19.