94
P. H. Bernardo et al. / Tetrahedron Letters 52 (2011) 92–94
Table 1
Growth inhibition (GI50) of test compounds against cancer cell lines. NT = Not tested due to poor solubility
GI50 SEM ( M) determined via SRB assay
l
Substrate
MCF-7
NCI-H460
SF268
A549
DU145
A8
13a
13b
13c
13d
13e
14a
14b
14c
14d
14e
Taxol
0.094 0.008
0.697 0.014
0.678 0.029
0.676 0.014
0.065 0.002
0.338 0.003
0.396 0.003
NT
0.062 0.001
0.561 0.017
0.265 0.004
0.554 0.012
0.060 0.002
0.933 0.021
0.633 0.002
NT
0.633 0.043
6.283 1.322
0.858 0.020
1.289 0.413
0.098 0.015
0.557 0.032
0.553 0.024
NT
0.184 0.006
0.848 0.026
0.642 0.021
0.667 0.034
0.077 0.004
2.013 0.776
0.910 0.119
NT
0.086 0.000
0.680 0.016
0.569 0.035
0.671 0.022
0.061 0.007
2.430 0.193
0.722 0.025
NT
0.070 0.011
0.586 0.048
0.498 0.072
0.584 0.05
0.061 0.006
0.490 0.107
0.546 0.139
NT
2.981 0.029
0.400 0.037
0.008 0.000
4.477 1.249
0.686 0.79
0.007 0.000
3.947 0.588
0.552 0.013
0.050 0.010
5.139 0.114
0.821 0.006
0.041 0.012
3.149 0.728
0.691 0.023
0.036 0.012
1.905 0.161
0.520 0.074
0.058 0.001
2. Abegaz, B. M. Phytochem. Rev. 2002, 1, 299–310.
3. Bolton, J. L.; Trush, M. A.; Penning, T. M.; Dryhurst, G.; Monks, T. J. Chem. Res.
Toxicol. 2000, 13, 135–160.
observed. Interestingly, the quinonic H(8) chemical shifts were
0.05–0.07 ppm lower than the H(9) chemical shifts.
The purified compounds 13a–e and 14a–e were screened
against various cancer cells lines using the SRB assay to determine
the growth inhibition.18,19 The human cancer cell lines assayed
were breast (MCF-7), lung (NCI-H460, A549), brain (SF268), pros-
tate (DU145), and epothilone-resistant ovarian cancer cells (A8).
All compounds were tested in triplicate. In this assay, the cells
were incubated in a 96-well plate with varying concentrations of
the test compounds (10 lM down to 0.001 lM) for 48 h, then fixed
with 50% TFA. The cells were washed with distilled water and fixed
with SRB. After washing away excess SRB, the remaining protein-
bound SRB was solubilized with Tris base (100 lL, 10 mM) and
4. Monks, T. J.; Hanzlik, R. P.; Cohen, G. M.; Ross, D.; Graham, D. G. Toxicol. Appl.
Pharmacol. 1992, 112, 2–16.
5. Swenton, J. S.; Raynolds, P. W. J. Am. Chem. Soc. 1978, 100, 6188–6195.
6. Keizer, H. G.; Pinedo, H. M.; Schuurhuis, G. J.; Joenje, H. Pharmacol. Ther. 1990,
47, 219–231.
7. Tritton, T. R. Curr. Commun. Cell Mol. Biol. 1991, 3, 121–137.
8. Tomasz, M. Chem. Biol. 1995, 2, 575–579.
9. Bradner, W. T. Cancer Treat. Rev. 2001, 27, 35–50.
10. Hagemeister, F.; Cabanillas, F.; Coleman, M.; Gregory, S. A.; Zinzani, P. L.
Oncologist 2005, 10, 150–159.
11. Martincic, D.; Hande, K. R. Cancer Chemother. Biol. Response Modif. 2005, 22,
101–121.
12. Valderrama, J. A.; Ibacache, J. A. Tetrahedron Lett. 2009, 50, 4361–4363.
13. Valderrama, J. A.; Ibacache, J. A.; Arancibia, V.; Rodriguez, J.; Theoduloz, C.
Bioorg. Med. Chem. 2009, 17, 2894–2901.
14. Vásquez, D.; Rodríguez, J. A.; Theoduloz, C.; Verrax, J.; Calderon, P. B.;
Valderrama, J. A. Bioorg. Med. Chem. Lett. 2009, 19, 5060–5062.
15. Bernardo, P. H.; Fitriyanto, W.; Chai, C. L. L. Synlett 2007, 1935–1939.
16. Bernardo, P. H.; Wan, K.-F.; Sivaraman, T.; Xu, J.; Moore, F. K.; Hung, A. W.;
Mok, H. Y. K.; Yu, V. C.; Chai, C. L. L. J. Med. Chem. 2008, 51, 6699–6710.
17. Harayama, T.; Akamatsu, H.; Okamura, K.; Miyagoe, T.; Akiyama, T.; Abe, H.;
Takeuchi, Y. J. Chem. Soc., Perkin Trans. 1 2001, 523–528.
18. Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.;
Warren, J. T.; Bokesch, H.; Kenney, S.; Boyd, M. R. J. Natl. Cancer Inst. 1990, 82,
1107–1112.
19. Monks, A.; Scudiero, D.; Skehan, P.; Shoemaker, R.; Paull, K.; Vistica, D.; Hose,
C.; Langley, J.; Cronise, P.; Vaigro-Wolff, A.; Gray-Goodrich, M.; Campbell, H.;
Mayo, J.; Boyd, M. J. Natl. Cancer Inst. 1991, 83, 757–766.
the relative protein concentrations were determined spectrometri-
cally at 515 nm. The results, reported as the concentration required
for 50% growth inhibition (GI50), are shown in Table 1.
The results show that most of the compounds were active at
single-digit and sub-micromolar ranges against a variety of cancer
cells. Compound 14c could not be tested due to its poor solubility.
Overall, compound 13e was the most potent synthetic compound
against all the cell lines, while compound 14d was the least active.
Compound 13a was the second best inhibitor. Compounds 13a20
and 13e21 show similar activity against the A8 cell line as Taxol,
but were ten-fold less effective against SF268. Within the 8-anilino
series, product 13e was the most active followed by 13a while
compounds 13b–d shared similar activities. No such trend was
observed with the 9-anilino series in which 14a,22 14b, and
14e23 all had very similar activities within the standard deviations
observed. Only the bromo compound 14d displayed strong attenu-
ation of activity within the series.
In summary, we have outlined a brief synthesis of 8- and 9-ani-
linophenanthridine-7,10-diones starting from 2,5-dimethoxyben-
zoic acid and various anilines. These compounds display
promising cytotoxic activity against several cancer cell lines and
may be useful as leads for anticancer compounds. Further work is
underway to determine the mechanism of action of these new qui-
nones as well as to optimize desirable physicochemical properties.
20. Compound 13a: mp 211–212 °C. Rf 0.41 (1:3 EtOAc/light petroleum). 1H NMR
(CDCl3, 400 MHz): d 6.48 (s, 1H, C–H), 7.30 (m, 3H, Ar–H), 7.46 (m, 2H, Ar–H),
7.52 (s, 1H, N–H), 7.75 (app. t, J = 7 Hz, 1H, Ar–H), 7.87 (app. t, J = 8 Hz, 1H, Ar–
H), 8.18 (d, J = 8 Hz, 1H, Ar–H), 9.61 (d, J = 6 Hz, 1H, Ar–H), 9.62 (s, 1H, Ar–H).
13C NMR (CDCl3, 100 MHz): d 105.1, 122.0, 122.6, 123.0, 125.9, 129.1, 129.8,
129.9, 130.1, 132.3, 133.7, 137.1, 142.9, 147.0, 152.8, 182.6 (CO), 186.7 (CO).
ESI-MS m/z 301 ([M+H]+, 100). HRMS calcd for C19H13N2O2: 301.0972 [M+H]+;
found: 301.0982.
21. Compound 13e: mp: 230–232 °C. 1H NMR (CDCl3, 400 MHz): d 3.94 (s, 3H, CH3),
6.45 (s, 1H, C–H), 6.81 (m, 2H, Ar–H), 7.49 (s, 1H, N–H), 7.59 (d, J = 8 Hz, 1H, Ar–
H), 7.75 (app. t, J = 8 Hz, 1H, Ar–H), 7.88 (app. t, J = 8 Hz, 1H, Ar–H), 8.17 (d,
J = 8 Hz, 1H, Ar–H), 9.59 (d, J = 8 Hz, 1H, Ar–H), 9.61 (s, 1H, Ar–H). 13C NMR
(CDCl3, 100 MHz): d 56.4, 105.8, 106.5, 108.4, 115.6, 120.2, 121.9, 122.9, 129.0,
130.0, 130.1, 132.4, 134.1, 137.6, 142.5, 147.0, 152.8, 156.8, 182.3 (CO), 186.7
(CO). ESI-MS m/z 409 ([M+H]+, 79Br, 100), 411 ([M+H]+, 81Br, 98). HRMS calcd
for C20H1479BrN2O3: 409.0182 [M+H]+; found: 409.0186.
22. Compound 14a: mp 243–244 °C. Rf 0.41 (1:3 EtOAc/light petroleum). 1H NMR
(CDCl3, 400 MHz): d 6.41 (s, 1H, C–H), 7.31 (m, 3H, Ar–H), 7.47 (m, 2H, Ar–H),
7.64 (s, 1H, N–H), 7.82 (app. t, J = 9 Hz, 1H, Ar–H), 7.88 (app. t, J = 8 Hz, 1H, Ar–
H), 8.23 (d, J = 8 Hz, 1H, Ar–H), 9.45 (d, J = 9 Hz, 1H, Ar–H), 9.72 (s, 1H, Ar–H).
13C NMR (CDCl3, 100 MHz): d 101.4, 122.0, 123.0, 123.6, 126.1, 126.8, 129.8,
129.9, 130.6, 130.7, 131.4, 137.1, 145.3, 148.0, 151.4, 183.7 (CO), 185.0 (CO).
ESI-MS m/z 301 ([M+H]+, 100). HRMS calcd for C19H13N2O2: 301.0972 [M+H]+;
found: 301.0983.
Acknowledgments
We thank the Agency for Science, Technology and Research
(A*STAR), Singapore, for funding this project. We also thank Sum
Rongji and Jessie Lim of the Chemical Synthesis Laboratory@ Biop-
olis (A*STAR) for carrying out the biological assays.
23. Compound 14e: mp: 240–241 °C. Rf 0.33 (1:3 EtOAc/hexanes). 1H NMR (CDCl3,
400 MHz): d 3.94 (s, 3H, CH3), 6.40 (s, 1H, C–H), 6.84 (m, 2H, Ar–H), 7.60 (m,
2H, Ar–H, N–H), 7.83 (app. t, J = 8 Hz, 1H, Ar–H), 7.89 (app. t, J = 8 Hz, 1H,
Ar–H), 8.24 (d, J = 8 Hz, 1H, Ar–H), 9.43 (d, J = 8 Hz, 1H, Ar–H), 9.72 (s, 1H, Ar–
H). 13C NMR (CDCl3, 100 MHz): d 56.5, 102.1, 106.8, 108.7, 116.0, 122.0, 123.4,
126.8, 129.8, 130.6, 130.8, 131.5, 134.1, 137.6, 144.9, 148.0, 151.5, 156.9, 183.7
(CO), 184.7 (CO). ESI-MS m/z 409 ([M+H]+, 79Br, 100), 411 ([M+H]+, 81Br, 100).
HRMS calcd for C20H1479BrN2O3: 409.0182 [M+H]+; found: 409.0192.
References and notes
1. Thomson, R. H. In Naturally Occurring Quinones; Thomson, R. H., Ed.; Academic
Press: London, 1971; pp 1–38.