(s, 3H, iso-propyl), 3.72 (q, 1H, 3J = 6.9 Hz, iso-propyl), 4.37 (q,
1H, 3J = 6.9 Hz, iso-propyl), 5.21 (s, 1H, N–C C–H ring proton,
Q2-H), 5.47 (s, 1H, O–C C–H ring proton, Q2-H), 6.49 (s, 1H,
NH), 7.36 (m, 2H, azobenzene), 7.54 (m, 4H, azobenzene), 7.91
(m, 2H, azobenzene), 8.02 (m, 1H, azobenzene). Anal. Calc. for
C24H26N4O2Pd: C, 56.64; H, 5.15; N, 11.01. Found: C, 56.58; H,
5.40; N, 11.20.
10 S. Patra, B. Sarkar, S. Maji, J. Fiedler, F. A. Urbanos, R. J.-. Aparicio,
W. Kaim and G. K. Lahiri, Chem.–Eur. J., 2006, 12, 489.
11 B. Sarkar, R. Huebner, R. Pattacini and I. Hartenbach, Dalton Trans.,
2009, 4653.
12 A. Dogan, B. Sarkar, A. Klein, F. Lissner, T. Schleid, J. Fiedler, S. Zalis,
V. K. Jain and W. Kaim, Inorg. Chem., 2004, 43, 5973.
13 W. Kaim, Coord. Chem. Rev., 2001, 219–221, 463.
14 M. D. Ward and J. A. McCleverty, J. Chem. Soc., Dalton Trans., 2002,
275.
15 A. I. Poddel’sky, V. K. Cherkasov and G. A. Abakumov, Coord. Chem.
Rev., 2009, 253, 291.
X-ray Ccrystallography
16 C. G. Pierpont, Coord. Chem Rev., 2001, 216–217, 95.
17 P. Zanello, Coord. Chem. Rev., 2006, 250, 2000.
18 K. Ray, T. Petrenko, K. Wieghardt and F. Neese, Dalton Trans., 2007,
1552.
Single crystals of 2 were grown by slow evaporation of a 1 : 4
dichloromethane–n-hexane solution at ambient temperatures. The
asymmetric unit consists of two molecules. X-ray diffraction data
were collected using an OXFORD XCALIBUR-S CCD single
crystal X-ray diffractometer. The structures were solved and
refined by full-matrix least-squares techniques on F2 using the
SHELX-97 program.41 The absorption correction was done by
the multi-scan technique. All data were corrected for Lorentz and
polarization effects, and the non-hydrogen atoms were refined
anisotropically. One of the isopropyl groups attached to the
nitrogen atom is disordered.
19 M. Nomura, T. Cauchy and M. Fourmigue´, Coord. Chem. Rev., 2010,
254, 1406.
20 B. Garreau de Bonneval, K. I. M.-C. Ching, F. Alary, T.-T. Bui and L.
Valade, Coord. Chem. Rev., 2010, 254, 1457.
21 J. S. Miller and K. S. Min, Angew. Chem., Int. Ed., 2009, 48, 262.
22 S. Kitagawa and S. Kawata, Coord. Chem. Rev., 2002, 224, 11.
23 H. S. Das, F. Weisser, D. Schweinfurth, C.-Y. Su, L. Bogani, J. Fiedler
and B. Sarkar, Chem.–Eur. J., 2010, 16, 2977.
24 O. Siri, P. Braunstein, M.-M. Rohmer, M. Benard and R. Welter, J. Am.
Chem. Soc., 2003, 125, 13793.
25 O. Siri, J.-P. Taquet, J.-P. Collin, M.-M. Rohmer, M. Be´nard and P.
Braunstein, Chem.–Eur. J., 2005, 11, 7247.
26 O. Siri and P. Braunstein, Chem. Commun., 2002, 208.
27 P. Braunstein, O. Siri, J.-P. Taquet, M.-M. Rohmer, M. Benard and R.
Walter, J. Am. Chem. Soc., 2003, 125, 12246.
Acknowledgements
28 Q. Z. Yang, O. Siri and P. Braunstein, Chem. Commun., 2005, 2660.
29 Q. Z. Yang, O. Siri and P. Braunstein, Chem.–Eur. J., 2005, 11, 7237.
30 J.-P. Taquet, O. Siri, P. Braunstein and R. Welter, Inorg. Chem., 2004,
43, 6944.
31 Q. Z. Yang, A. Kermagoret, M. Agostinho, O. Siri and P. Braunstein,
Organometallics, 2006, 25, 5518.
BS is indebted to the Baden–Wu¨rttemberg Stiftung for financial
support of this work through the Elite Program for Postdocs. Denis
Bubrin is kindly acknowledged for help with crystal structure
solving.
32 F. A. Cotton, J.-Y. Jin, Z. Li, C. A. Murillo and J. H. Reibenspies,
Chem. Commun., 2008, 211.
33 H. S. Das, A. K. Das, R. Pattacini, R. Huebner, B. Sarkar and P.
Braunstein, Chem. Commun., 2009, 4387.
34 P. Braunstein, D. Bubrin and B. Sarkar, Inorg. Chem., 2009, 48, 2534.
35 A. Paretzki, R. Pattacini, R. Huebner, P. Braunstein and B. Sarkar,
Chem. Commun., 2010, 46, 1497.
36 H.-Y. Cheng, G.-H. Lee and S.-M. Peng, Inorg. Chim. Acta, 1992, 191,
25.
References
1 H. Kirsch and P. Holzmeier, Adv. Organomet. Chem., 1992, 34, 67.
2 T. Yukuta, I. Mori, M. Kurihara, J. Mizutani, N. Tamai, T. Kawai, M.
Irie and H. Nishihara, Inorg. Chem., 2002, 41, 7143.
3 S. Kume and H. Nishihara, Dalton Trans., 2008, 3260.
4 A. C. Cope and R. W. Siekman, J. Am. Chem. Soc., 1965, 87,
3272.
5 D. Babic, M. Curic, K. Molcanov, G. Ilc and J. Plavec, Inorg. Chem.,
2008, 47, 10446.
37 S. Scheuermann, T. Kretz, H. Vitze, J. W. Bats, M. Bolte, H.-W. Lerner
and M. Wagner, Chem.–Eur. J., 2008, 14, 2590.
6 B. Sarkar, S. Patra, J. Fiedler, R. B. Sunoj, D. Janardanan, G. K. Lahiri
and W. Kaim, J. Am. Chem. Soc., 2008, 130, 3532.
7 B. Sarkar, S. Patra, J. Fiedler, R. B. Sunoj, D. Janardanan, S. M. Mobin,
M. Niemeyer, G. K. Lahiri and W. Kaim, Angew. Chem., Int. Ed., 2005,
44, 5655.
8 B. K. Santra, G. A. Thakur, P. Ghosh, A. Pramanik and G. K. Lahiri,
Inorg. Chem., 1996, 35, 3050.
38 W.-G. Jia, Y.-F. Han, Y.-J. Lin, L.-H. Weng and G.-X. Jin,
Organometallics, 2009, 28, 3459.
39 J. Mattsson, P. Govindaswamy, A. K. Renfrew, P. J. Dyson, P. Stepnicka,
G. S. Fink and B. Therrien, Organometallics, 2009, 28, 4350.
40 S. Kar, B. Sarkar, S. Ghumaan, D. Janardanan, J. van Slageren, J.
Fiedler, V. G. Puranik, R. B. Sunoj, W. Kaim and G. K. Lahiri, Chem.–
Eur. J., 2005, 11, 4901.
9 G. K. Lahiri, S. Bhattacharya, S. Goswami and A. Chakravorty,
J. Chem. Soc., Dalton Trans., 1990, 561.
41 G. M. Sheldrick, ‘SHELXS-97, Program for Solution of Crystal
Structures’, University of Go¨ttingen, Germany, 1997.
436 | Dalton Trans., 2011, 40, 431–436
This journal is
The Royal Society of Chemistry 2011
©