Despite its prevalence, the Arbuzov reaction has two key
drawbacks. First, the elevated temperatures typically required
limit the scope of substrates suitable for the reaction. Second,
the reaction generates one equivalent of alkyl halide, which
can react with the phosphite under the reaction conditions
to reduce yield and reaction efficiency. A modification using
dialkylphosphite salts instead of trialkylphosphites eliminates
the problem of new alkyl halide generation, but the yields
are typically poorer, and this strategy is much less used.9 A
number of other strategies for alkyl phosphonate synthesis
have been developed,10,11 most notably the transition metal-
mediated hydrophosphonylation of olefins with cyclic five-
membered hydrogen phosphonates.12 Yet even this reaction
is limited by the phosphite component scope and prolonged
heating. Here we present a room-temperature alternative to
the Arbuzov reaction that allows for the synthesis of
phosphonates from carboxylic acids.
Scheme 2
.
Retrosynthesis of Alkyl Phosphonates from
Carboxylic Acids
proposal may seem unattractive, given that Wolff-Kishner
conditions are quite harsh (the frequently used Huang-Minlon
modification calls for ethylene glycol and potassium hydroxide
at 200 °C).15,16 However, we reasoned that the electron-
withdrawing phosphonate group could stabilize the carban-
ionic character of the presumed key intermediate (Scheme
3). The attendant transition state stabilization would allow
this reaction variant to be much milder.
We began with the observation that the Arbuzov reaction of
acyl halides is strikingly mild in comparison to the alkyl variant,
often going to completion in several minutes at room temper-
ature.13 Second, we noted that these acyl phosphonates can form
isolable hydrazones,14 in contrast to most other carboxylic acid
derivatives. This led us to consider the possibility that such acyl
phosphonates could be deoxygenated through a Wolff-Kishner-
type reduction to give alkyl phosphonates. Such a reaction
would allow alkyl phosphonates to be readily accessed from
carboxylic acid precursors (Scheme 2). At first glance, such a
Scheme 3. Electron-Withdrawing Phosphonate Stabilizes the
Carbanionic Character of the Key Intermediate
(6) (a) Arbuzov, A. J. Russ. Phys. Chem. Soc. 1906, 38. (b) Arbuzow,
B. A. Pure Appl. Chem. 1964, 9, 307. (c) Bhattacharya, A. K.; Thyagarajan,
G. Chem. ReV. 1981, 81, 415. (d) Michaelis, A.; Kaehne, R. Chem. Ber.
1898, 31, 1048.
(7) Aryl/vinyl phosphontates can be readily prepared by a variety of
transition metal-mediated coupling reactions of the corresponding aryl/vinyl
halides. (a) Gelman, D.; Jiang, L.; Buchwald, S. L. Org. Lett. 2003, 13,
2315. (b) Hirao, T.; Masunaga, T.; Yamada, N.; Ohshiro, Y.; Agawa, T.
Bull. Chem. Soc. Jpn. 1982, 55, 909. (c) Kohler, M. C.; Sokol, J. G.;
Stockland, R. A. Tetrahedron Lett. 2009, 50, 457. (d) Schwan, A. L. Chem.
Soc. ReV. 2004, 33, 218. (e) Tavs, P. Chem. Ber.-Recl. 1970, 103, 2428.
(8) R-Hydroxy/R-amino phosphonates are typically prepared from dialkyl
phosphites and the corresponding carbonyl/imine. (a) Gazizov, T. K.;
Pyndyk, A. M.; Sudarev, Y. I.; Podobedov, V. B.; Kovalenko, V. I.; Pudovik,
A. N. B. Acad. Sci. USSR Ch. 1978, 27, 2319. (b) Pudovik, A. N.;
Konovalova, I. V. Synthesis 1979, 81.
To test this proposal, we synthesized the hydrazone of
diethyl propionylphosphonate. Guided by several reports of
low temperature (e100 °C) Wolff-Kishner reductions,17 we
slowly added the hydrazone to a rapidly stirring mixture of
10 equiv of potassium tert-butoxide in dimethyl sulfoxide
at room temperature. Pleasingly, a trace amount of diethyl
propylphosphonate could be detected in the crude reaction
mixture by 31P NMR. After exploring a variety of reaction
conditions with the screening robot in the Caltech Center
for Catalysis and Chemical Synthesis, we found that good
(g70%) yields of diethyl propylphosphonate could be
obtained at room temperature using potassium tert-butoxide
in a 50% V/V tetrahydrofuran:tert-butanol solvent mixture.
We then turned our attention toward the hydrazone-
formation step, seeking conditions that would allow the crude
hydrazone to be used directly in the base-promoted reduction
step. Using propionyl phosphonate as the model substrate,
we found that moderately acidic conditions worked best:
strongly acidic conditions led to no reaction, while pH-neutral
and basic conditions led to decomposition of the starting
(9) Michaelis, A.; Becker, T. H. Chem. Ber. 1897, 30, 1003. See also
ref 1a, p 7.
(10) (a) Chatterjee, A. K.; Choi, T.-L.; Grubbs, R. H. Synlett 2001, 1034.
(b) Inokawa, S.; Nakatsukasa, Y.; Horisaki, M.; Yamashita, M.; Yoshida,
H.; Ogata, T. Synthesis 1977, 179. (c) Lee, K.; Wiemer, D. F. J. Org. Chem.
1991, 56, 5556. (d) Oshikawa, T.; Yamashita, M. Bull. Chem. Soc. Jpn.
1990, 63, 2728. (e) Renard, P.-Y.; Vayron, P.; Leclerc, E.; Valleix, A.;
Mioskowski, C. Angew. Chem., Int. Ed. 2003, 42, 2389. (f) Suzuki, K.;
Hashimoto, T.; Maeta, H.; Matsumoto, T. Synlett 1992, 125. (g) Zheng, S.;
Barlow, S.; Parker, T. C.; Marder, S. R. Tetrahedron Lett. 2003, 44, 7989
.
(11) (a) Deprele, S.; Montchamp, J.-L. J. Org. Chem. 2001, 66, 6745.
(b) Ganapathy, S.; Sekhar, B. B. V. S.; Cairns, S. M.; Akutagawa, K.;
Bentrude, W. G. J. Am. Chem. Soc. 1999, 121, 2085. (c) Stiles, A. R.;
Vaughan, W. E.; Rust, F. F. J. Am. Chem. Soc. 1958, 80, 714. (d) Tayama,
O.; Nakano, A.; Iwahama, T.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2004,
69, 5494
.
(12) (a) Bravo-Altamirano, K.; Montchamp, J.-L. Tetrahedron Lett. 2007,
48, 5755. (b) Coudray, L.; Montchamp, J.-L. Eur. J. Org. Chem. 2008,
3601. (c) Han, L.-B.; Mirzaei, F.; Zhao, C.-Q.; Tanaka, M. J. Am. Chem.
Soc. 2000, 122, 5407. (d) Reichwein, J. F.; Patel, M. C.; Pagenkopf, B. L.
Org. Lett. 2001, 3, 4303. (e) Xu, Q.; Han, L.-B. Org. Lett. 2006, 8, 2099.
(13) Berlin, K. D.; Taylor, H. A. J. Am. Chem. Soc. 1964, 86, 3862.
See also ref 6c.
(15) (a) Kishner, N. J. Russ. Chem. Soc. 1911, 43. (b) Wolff, L. Liebigs
Ann. Chem. 1912, 394, 23. (c) Wolff, L. Liebigs Ann. Chem. 1912, 394,
86
.
(16) (a) Minlon, H. J. Am. Chem. Soc. 1946, 68, 2487. (b) Minlon, H.
J. Am. Chem. Soc. 1949, 71, 3301
(17) (a) Cram, D. J.; Sahyun, M. R. V.; Knox, G. R. J. Am. Chem. Soc.
1962, 84, 1734. (b) Furrow, M. E.; Myers, A. G. J. Am. Chem. Soc. 2004,
126, 5436. (c) Grundon, M. F.; Henbest, H. B.; Scott, M. D. J. Chem. Soc.
1963, 1855.
.
(14) (a) Ben Akacha, A.; Barkallah, S.; Baccar, B. Phosphorus, Sulfur
Silicon Relat. Elem. 1992, 69, 163. (b) Yuan, C. Y.; Chen, S. J.; Xie, R. Y.;
Feng, H. Z.; Maier, L. Phosphorus, Sulfur Silicon Relat. Elem. 1995, 106,
115.
Org. Lett., Vol. 12, No. 18, 2010
3991