10.1002/anie.201807683
Angewandte Chemie International Edition
COMMUNICATION
undergoes C(sp3)–H/N–H cross coupling reaction[22] [62 (R =
OMe)] to generate the pyrrolidine product 4 (Ep/2 = 1.07 V vs
SCE) or intramolecular dehydration (R = Me) to afford the
tetrahydropyridine 40 (Ep/2 = 1.15 V vs SCE).[23] When the
[10] Selected recent reviews on organic electrochemistry: a) J. Yoshida, K.
Kataoka, R. Horcajada, A. Nagaki, Chem. Rev. 2008, 108, 2265–2299;
b) R. Francke, R. D. Little, Chem. Soc. Rev. 2014, 43, 2492–2521; M.
Yan, Y. Kawamata, P. S. Baran, Chem. Rev. 2017, 117, 13230–13319;
c) J. E. Nutting, M. Rafiee, S. S. Stahl, Chem. Rev. 2018, 118, 4834–
4885; d) E. J. Horn, B. R. Rosen, P. S. Baran, ACS Cent. Sci. 2016, 2,
302–308; e) A. Wiebe, T. Gieshoff, S. Möhle, E. Rodrigo, M. Zirbes, R.
Waldvogel Siegfried, Angew. Chem. Int. Ed. 2018, 57, 5594–5619;
Angew. Chem. 2018, 130, 5694–5721; f) Q. L. Yang, P. Fang, T. S. Mei,
Chin. J. Chem. 2018, 36, 338–352; g) K. D. Moeller, Chem. Rev. 2018,
118, 4817–4833; h) S. R. Waldvogel, S. Lips, M. Selt, B. Riehl, C. J.
Kampf, Chem. Rev. 2018, 118, 6706-6765; i) Y. Jiang, K. Xu, C. Zeng,
Chem. Rev. 2018, 118, 4485–4540; j) N. Sauermann, T. H. Meyer, Y.
Qiu, L. Ackermann, ACS Catal. 2018, 8, 7086-7103.
electrochemical reaction of
1 with 2 was conducted in
tBuOMe/MeOH (cf. Scheme 4d), an intermediate with m/z
436.1728 was observed, which was ascribed to IX [Scheme 5,
theoretical m/z for (IX + Na)+ 436.1731]. These results provide
support for the formation of intermediate VIII during the
electrolysis in aqueous solution. Note that the intermediate
amine 62 decomposed quickly in the presence of stoichiometric
nBu4NOH or DBU. Fortunately, under the electrochemical
conditions, HO− is generated in situ and continuously at the
cathode to aid the oxidation steps, allowing the annulation
reactions to proceed under mildly basic conditions (Scheme 2)
or without an external base (Scheme 3).
[11] S. Tang, Y. Liu, A. Lei, Chem 2018, 4, 27–45.
[12] Selected recent examples on electrochemical dehydrogenative
annulation reactions: a) K. Liu, S. Tang, P. Huang, A. Lei, Nat.
Commun. 2017, 8, 775; b) S. Tang, D. Wang, Y. Liu, L. Zeng, A. Lei,
Nat. Commun. 2018, 9, 798; c) C. Tian, L. Massignan, H. Meyer Tjark,
L. Ackermann, Angew. Chem. Int. Ed. 2018, 57, 2383–2387; Angew.
Chem. 2018, 130, 2407–2411; d) Y. Qiu, C. Tian, L. Massignan, T.
Rogge, L. Ackermann, Angew. Chem. Int. Ed. 2018, 57, 5818–5822;
Angew. Chem. 2018, 130, 5920–5924; g) J. Chen, W. Q. Yan, C. M.
Lam, C. C. Zeng, L. M. Hu, R. D. Little, Org. Lett. 2015, 17, 986–989; h)
J. Li, W. Huang, J. Chen, L. He, X. Cheng, G. Li, Angew. Chem. Int. Ed.
2018, 57, 5695–5698; Angew. Chem. 2018, 130, 5797–5800; i) Z.-W.
Hou, H. Yan, J.-S. Song, H.-C. Xu, Chin. J. Chem. 2018, 36, 909-915; j)
Z. W. Hou, Z. Y. Mao, H. B. Zhao, Y. Y. Melcamu, X. Lu, J. Song, H.-C.
Xu, Angew. Chem. Int. Ed. 2016, 55, 9168–9172; Angew. Chem. 2016,
128, 9314–9318; k) Z.-W. Hou, Z.-Y. Mao, Y. Y. Melcamu, X. Lu, H.-C.
Xu, Angew. Chem. Int. Ed. 2018, 57, 1636-1639; Angew. Chem. 2018,
130,1652–1655.
In summary, we have developed an unprecedented
approach
for
the
synthesis
of
pyrrolidines
and
tetrahydropyridines via dehydrogenative annulation reactions of
easily available materials. The use of a phenothiazine-based
redox catalyst enables efficient and selective intermolecular
radical reactions of 1,3-dicarbonyl compounds. The application
of this organocatalyzed electrochemical system in promoting
other oxidative radical reactions of 1,3-dicarbonyl compounds
are under investigation in our laboratory.
Acknowledgements
[13] a) Z.-J. Wu, S.-R. Li, H. Long, H.-C. Xu, Chem. Commun. 2018, 54,
4601–4604; b) Z.-J. Wu, H.-C. Xu, Angew. Chem. Int. Ed. 2017, 56,
4734–4738; Angew. Chem. 2017, 129, 4812–4816.
Financial
support
of
this
research
from
MOST
(2016YFA0204100), NSFC (21672178) and Fundamental
Research Funds for the Central Universities.
[14] L. Zhu, P. Xiong, Z. Y. Mao, Y. H. Wang, X. Yan, X. Lu, H.-C. Xu,
Angew. Chem. Int. Ed. 2016, 55, 2226–2229; Angew. Chem. 2016, 128,
2266–2269.
Keywords: electrochemistry • heterocycles • redox chemistry •
radicals • annulation
[15] R. D. Taylor, M. MacCoss, A. D. G. Lawson, J. Med. Chem. 2014, 57,
5845–5859.
[16] a) T. M. Bott, J. A. Vanecko, F. G. West, J. Org. Chem. 2009, 74,
2832–2836; b) L. Q. Lu, J. J. Zhang, F. Li, Y. Cheng, J. An, J. R. Chen,
W. J. Xiao, Angew. Chem. Int. Ed. 2010, 49, 4495–4498; Angew. Chem.
2010, 122, 4597–4600; c) V. Sriramurthy, G. A. Barcan, O. Kwon, J.
Am. Chem. Soc. 2007, 129, 12928–12929.
[1]
[2]
G. A. Molander, Acc. Chem. Res. 1998, 31, 603–609.
a) P. Ertl, S. Jelfs, J. Mühlbacher, A. Schuffenhauer, P. Selzer, J. Med.
Chem. 2006, 49, 4568–4573; b) R. D. Taylor, M. MacCoss, A. D. G.
Lawson, J. Med. Chem. 2014, 57, 5845–5859.
[17] a) R. C. Clark, S. S. Pfeiffer, D. L. Boger, J. Am. Chem. Soc. 2006, 128,
2587–2593; b) X.-F. Zhu, J. Lan, O. Kwon, J. Am. Chem. Soc. 2003,
125, 4716–4717; c) B. Han, J. L. Li, C. Ma, S. J. Zhang, Y. C. Chen,
Angew. Chem. Int. Ed. 2008, 47, 9971–9974; Angew. Chem. 2008, 120,
10119–10122; d) J.-F. Zheng, Z.-X. Xie, X. Chen, P.-Q. Huang, Acta
Chim. Sinica 2015, 73, 705–715.
[3]
a) S. A. Girard, T. Knauber, C. J. Li, Angew. Chem. Int. Ed. 2014, 53,
74–100; Angew. Chem. 2014, 126, 76–103; b) M. Gulías, J. L.
Mascareñas, Angew. Chem. Int. Ed. 2016, 55, 11000–11019; Angew.
Chem. 2016, 128, 11164–11184.
[4]
[5]
For the problems associated with the use of oxidants in pharmaceutical
synthesis, see: S. Caron, R. W. Dugger, S. G. Ruggeri, J. A. Ragan, D.
H. B. Ripin, Chem. Rev. 2006, 106, 2943–2989.
[18] See the Supporting Information for more discussion.
[19] Despite the low oxidation potential of II, its direct oxidation on the
electrode did not occur because this species is generated at low
concentration in situ and there is no sufficient amount in the reaction
mixture to sustain the current.
a) J. Li, Y. Ye, Y. Zhang, Org. Chem. Front. 2018, 5, 864–892; b) J.-R.
Chen, X.-Q. Hu, L.-Q. Lu, W.-J. Xiao, Chem. Rev. 2015, 115, 5301–
5365; c) A. Minatti, K. Muniz, Chem. Soc. Rev. 2007, 36, 1142–1152.
B. B. Snider, Chem. Rev. 1996, 96, 339–363.
[6]
[7]
[20] U. Jahn, M. Muller, S. Aussieker, J. Am. Chem. Soc. 2000, 122, 5212–
5213.
a) S. Tang, K. Liu, Y. Long, X. L. Gao, M. Gao, A. W. Lei, Org. Lett.
2015, 17, 2404–2407; b) E.-A. I. Heiba, R. M. Dessau, J. Org. Chem.
1974, 39, 3456–3457; c) G. Savitha, S. K. Niveditha, D. Muralidharan,
P. T. Perumal, Tetrahedron Lett. 2007, 48, 2943–2947.
[21] The origin of this unusual selectivity remains unclear.
[22] This dehydrogenative C–N bond forming strategy is also applicable to
six-membered ring formation (Scheme S1).
[8]
[9]
N. Fuentes, W. Kong, L. Fernandez-Sanchez, E. Merino, C. Nevado, J.
Am. Chem. Soc. 2015, 137, 964–973.
[23] The oxidation potentials of the heterocyclic products and the amine
intermediate VIII are expected to vary with different N-aryl groups.
a) J. Yoshida, K. Sakaguchi, S. Isoe, J. Org. Chem. 1988, 53, 2525–
2533; b) J. Yoshida, K. Sakaguchi, S. Isoe, Tetrahedron Lett. 1986, 27,
6075–6078.
This article is protected by copyright. All rights reserved.