NaTurE CHEMisTry
Articles
∆G
Me
O
(∆H)
kcal mol–1
Ph
Me
H
S
N
167.0°
N
1.33
1.33
O
H
2.40
2.76
Me
[Fe]
N
O
[Fe]
N
2.03
TS1
(triplet)
S
Me
Ph
O
15.7
(9.1)
TS2
(quintet)
7
TS2
TS1
(triplet)
O
O
6.3
(4.5)
S
Me
0.0
(0.0)
HN
N
8
(triplet)
Ph
Me
Me
Me
5a
–12.1
Me
N
N
N
(–13.2)
Me
O
Ph
N
Ph
N
[Fe]
Fe
[FeII]
O
S
S
N
N
N 0.84
9
HN
O
O
(quintet)
[FeIII
]
Fe 1.16
[FeIII
]
OMe
–38.4
(–27.1)
7
8
Fig. 6 | Free energy profile of the iron porphyrin-catalysed C(sp3)–H amination. Density functional theory calculations were performed at the B3LYP-
D3(BJ)/6-311+G(d,p)–LANL2TZ(f)/SMD(chlorobenzene)//B3LYP-D3(BJ)/6-31+G(d)–LANL2DZ level of theory. The Mulliken spin densities of iron and
nitrogen for the key iron nitrenoid 7 are shown in blue.
16. Brandenberg, O. F., Fasan, R. & Arnold, F. H. Exploiting and engineering
Received: 12 April 2019; Accepted: 15 August 2019;
hemoproteins for abiological carbene and nitrene transfer reactions. Curr.
Published: xx xx xxxx
Opin. Biotechnol. 47, 102–111 (2017).
17. Singh, R., Bordeaux, M. & Fasan, R. P450-catalyzed intramolecular sp3 C–H
references
amination with arylsulfonyl azide substrates. ACS Catal. 4, 546–552 (2014).
18. Zhang, R. K. et al. Enzymatic assembly of carbon–carbon bonds via
iron-catalysed sp3 C–H functionalization. Nature 565, 67–72 (2019).
19. McIntosh, J. A. et al. Enantioselective intramolecular C–H amination
catalyzed by engineered cytochrome P450 enzymes in vitro and in vivo.
Angew. Chem. Int. Ed. 52, 9309–9312 (2013).
1. Saint-Denis, T. G., Zhu, R.-Y., Chen, G., Wu, Q.-F. & Yu, J.-Q.
Enantioselective C(sp3)‒H bond activation by chiral transition metal catalysts.
Science 359, eaao4798 (2018).
2. Gutekunst, W. R. & Baran, P. S. C–H functionalization logic in total synthesis.
Chem. Soc. Rev. 40, 1976–1991 (2011).
3. Hartwig, J. F. & Larsen, M. A. Undirected, homogeneous C–H bond
functionalization: challenges and opportunities. ACS Cent. Sci. 2,
281–292 (2016).
20. Hyster, T. K., Farwell, C. C., Buller, A. R., McIntosh, J. A. & Arnold, F. H.
Enzyme-controlled nitrogen-atom transfer enables regiodivergent C–H
amination. J. Am. Chem. Soc. 136, 15505–15508 (2014).
21. Prier, C. K., Zhang, R. K., Buller, A. R., Brinkmann-Chen, S. & Arnold, F. H.
Enantioselective, intermolecular benzylic C–H amination catalysed by an
engineered iron–haem enzyme. Nat. Chem. 9, 629–634 (2017).
22. Kurokawa, T., Kim, M. & Du Bois, J. Synthesis of 1,3-diamines through
rhodium-catalyzed C–H insertion. Angew. Chem. Int. Ed. 48,
2777–2779 (2009).
23. Lu, H., Jiang, H., Wojtas, L. & Zhang, X. P. Selective intramolecular C–H
amination through the metalloradical activation of azides: synthesis of
1,3-diamines under neutral and nonoxidative conditions. Angew. Chem. Int.
Ed. 49, 10192–10196 (2010).
4. Lu, H. & Zhang, X. P. Catalytic C–H functionalization by metalloporphyrins:
recent developments and future directions. Chem. Soc. Rev. 40,
1899–1909 (2011).
5. Davies, H. M. L. & Manning, J. R. Catalytic C–H functionalization by metal
carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).
6. Smalley, A. P., Cuthbertson, J. D. & Gaunt, M. J. Palladium-catalyzed
enantioselective C–H activation of aliphatic amines using chiral
anionic binol-phosphoric acid ligands. J. Am. Chem. Soc. 139,
1412–1415 (2017).
7. Quasdorf, K. W. & Overman, L. E. Catalytic enantioselective synthesis of
quaternary carbon stereocentres. Nature 516, 181–191 (2014).
8. Bhat, V., Welin, E. R., Guo, X. & Stoltz, B. M. Advances in stereoconvergent
catalysis from 2005 to 2015: transition-metal-mediated stereoablative
reactions, dynamic kinetic resolutions, and dynamic kinetic asymmetric
transformations. Chem. Rev. 117, 4528–4561 (2017).
24. Zalatan, D. N. & Du Bois, J. A chiral rhodium carboxamidate catalyst for
enantioselective C–H amination. J. Am. Chem. Soc. 130, 9220–9221 (2008).
25. Ichinose, M. et al. Enantioselective intramolecular benzylic C–H bond
amination: efcient synthesis of optically active benzosultams. Angew. Chem.
Int. Ed. 50, 9884–9887 (2011).
9. Lewis, J. C., Coelho, P. S. & Arnold, F. H. Enzymatic functionalization of
carbon–hydrogen bonds. Chem. Soc. Rev. 40, 2003–2021 (2011).
10. Ortiz de Montellano, P. R. Hydrocarbon hydroxylation by cytochrome P450
enzymes. Chem. Rev. 110, 932–948 (2010).
26. Roizen, J. L., Harvey, M. E. & Du Bois, J. Metal-catalyzed nitrogen-atom
transfer methods for the oxidation of aliphatic C–H bonds. Acc. Chem. Res.
45, 911–922 (2012).
27. Paradine, S. M. & White, M. C. Iron-catalyzed intramolecular allylic C–H
amination. J. Am. Chem. Soc. 134, 2036–2039 (2012).
11. Fasan, R. Tuning P450 enzymes as oxidation catalysts. ACS Catal. 2,
647–666 (2012).
28. Paradine, S. M. et al. A manganese catalyst for highly reactive yet
chemoselective intramolecular C(sp3)–H amination. Nat. Chem. 7,
987–994 (2015).
12. Coelho, P. S., Brustad, E. M., Kannan, A. & Arnold, F. H. Olefn
cyclopropanation via carbene transfer catalyzed by engineered cytochrome
P450 enzymes. Science 339, 307–310 (2013).
29. Clark, J. R., Feng, K., Sookezian, A. & White, M. C. Manganese-catalysed
benzylic C(sp3)–H amination for late-stage functionalization. Nat. Chem. 10,
583–591 (2018).
13. Kan, S. B. J., Lewis, R. D., Chen, K. & Arnold, F. H. Directed evolution of
cytochrome c for carbon–silicon bond formation: bringing silicon to life.
Science 354, 1048–1051 (2016).
30. Li, C. et al. Catalytic radical process for enantioselective amination of
C(sp3)−H bonds. Angew. Chem. Int. Ed. 57, 16837–16841 (2018).
31. Lu, H., Lang, K., Jiang, H., Wojtas, L. & Zhang, X. P. Intramolecular
1,5-C(sp3)–H radical amination via Co(ii)-based metalloradical catalysis for
fve-membered cyclic sulfamides. Chem. Sci. 7, 6934–6939 (2016).
32. Capdevila, J. H. et al. Te highly stereoselective oxidation of
polyunsaturated fatty acids by cytochrome P450BM-3. J. Biol. Chem. 271,
22663–22671 (1996).
14. Key, H. M., Dydio, P., Clark, D. S. & Hartwig, J. F. Abiological catalysis by
artifcial haem proteins containing noble metals in place of iron. Nature 534,
534–537 (2016).
15. Dydio, P., Key, H. M., Hayashi, H., Clark, D. S. & Hartwig, J. F.
Chemoselective, enzymatic C–H bond amination catalyzed by a cytochrome
P450 containing an Ir(Me)-PIX cofactor. J. Am. Chem. Soc. 139,
1750–1753 (2017).