Analogues of the Antimalarial Artemisinin
J ournal of Medicinal Chemistry, 1998, Vol. 41, No. 6 963
(22) Meshnick, S. R.; Taylor, T. E.; Kamchonwongpaisan, S. Arte-
misinin and the Antimalarial Endoperoxides: From Herbal
Remedy to Targeted Chemotherapy. Microbiol. Rev. 1996, 60,
301-315.
(23) Haynes, R. K.; Vonwiller, S. C. The Behaviour of Qinghaosu
(Artemisinin) in the Presence of Heme Iron (II) and (III).
Tetrahedron Lett. 1996, 37, 253-256.
(24) Hong, Y. L.; Yang, Y. Z.; Meshnick, S. R. The Interaction of
Artemisinin with Malaria Hemozoin. Mol. Biochem. Parasitol.
1994, 63, 121-128.
(25) Robert, A.; Meunier, B. Characterization of the First Covalent
Adduct Between Artemisinin and a Heme Model. J . Am. Chem.
Soc. 1997, 119, 5968-5969.
(26) Vroman, J . A.; Khan, I. A.; Avery, M. A. Copper(I) Catalyzed
Conjugated Addition of Grignard Reagent to Acrylic Acids:
Homologation of Artemisinic Acid and Subsequent Conversion
to 9-Substituted Artemisinin Analogs. Tetrahedron Lett. 1997,
38, 6173-6176.
(27) Lin, A. J .; Zikry, A. B.; Kyle, D. E. Antimalarial Activity of New
Dihydroartemisinin Derivatives. 7. 4-(p-Substituted phenyl)-4(R
or S)-[10(R or â)-dihydroartemisininoxy]butyric Acids. J . Med.
Chem. 1997, 40, 1396-1400.
(28) Mekonnen, B.; Ziffer, H. A New Route to N-Substituted 11-
Azaartemisinins. Tetrahedron Lett. 1997, 38, 731-734.
(29) O’Neill, P. M.; Bishop, L. P.; Storr, R. C.; Hawley, S. R.; Maggs,
J . L.; Ward, S. A.; Park, B. K. Mechanism-Based Design of
Parasite-Targeted Artemisinin Derivatives: Synthesis and An-
timalarial Activity of Benzylamino and Alkylamino Ether Ana-
logues of Artemisinin. J . Med. Chem. 1996, 39, 4511-4514.
(30) J ung, M. Current Developments in the Chemistry of Artemisinin
and Related Compounds. Curr. Med. Chem. 1994, 1, 46-60.
(31) Zaman, S. S.; Sharma, R. P. Some Aspects of the Chemistry and
Biological Activity of Artemisinin and Related Antimalarials.
Heterocycles 1991, 32, 1593-1638.
(32) Singh, C.; Misra, D.; Saxena, G.; Chandra, S. In vivo Potent
Antimalarial 1,2,4-Trioxanes: Synthesis and Activity of 8-(R-
arylvinyl)-6,7,10-trioxaspiro[4,5]decanes and 3-(R-arylvinyl)-
1,2,5-trioxaspiro[5,5]undecanes Against Plasmodium berghei in
Mice. Bioorg. Med. Chem. Lett. 1995, 5, 1913-1916.
(33) J efford, C. W.; Kohmoto, S.; J aggi, D.; Tima´ri, G.; Rossier, G.
C.; Rudaz, M.; Barbuzzi, O.; Ge´rard, D.; Burger, U.; Kamalaprija,
P.; Mareda, J .; Bernardinelli, G.; Manzanares, I.; Canfield, C.
J .; Fleck, S. L.; Robinson, B. L.; Peters, W. 51. Synthesis,
Structure, and Antimalarial Activity of Some Enantiomerically
Pure, cis-Fused Cyclopenteno-1,2,4-trioxanes. Helv. Chim. Acta
1995, 78, 647-662.
(43) For a proposal of an ionic mechanism, see: Haynes, R. K.;
Vonwiller, S. C. The Behaviour of Qinghaosu (Artemisinin) in
the Presence of Non-Heme Iron(II) and (III). Tetrahedron Lett.
1996, 37, 257-260.
(44) Posner, G. H.; Park, S. B.; Gonza´lez, L.; Wang, D.; Cumming, J .
N.; Klinedinst, D.; Shapiro, T. A.; Bachi, M. D. Evidence for the
Importance of High-Valent FedO and of a Diketone in the
Molecular Mechanism of Action of Antimalarial Trioxane Ana-
logues of Artemisinin. J . Am. Chem. Soc. 1996, 118, 3537-3538.
(45) J efford, C. W.; Velarde, J . A.; Bernardinelli, G.; Bray, D. H.;
Warhurst, D. C.; Milhous, W. K. 198. Synthesis, Structure, and
Antimalarial Activity of Tricyclic 1,2,4-Trioxanes Related to
Artemisinin. Helv. Chim. Acta 1993, 76, 2775-2788.
(46) Oh, C. H.; Wang, D.; Cumming, J . N.; Posner, G. H. Antimalarial
1,2,4-Trioxanes Related to Artemisinin: Rules for Assignment
of Relative Stereochemistry in Diversely Substituted Analogs.
Spectrosc. Lett. 1997, 30, 241-255.
(47) Posner, G. H.; Oh, C. H.; Wang, D.; Gerena, L.; Milhous, W. K.;
Meshnick, S. R.; Asawamahasakda, W. Mechanism-Based De-
sign, Synthesis, and in Vitro Antimalarial Testing of New
4-Methylated Trioxanes Structurally Related to Artemisinin:
The Importance of a Carbon-Centered Radical for Antimalarial
Activity. J . Med. Chem. 1994, 37, 1256-1258.
(48) C4-Phenyltrioxanes were synthesized starting with condensation
of the pyrrolidino enamine of cyclohexanone with R-phenyl
acrylonitrile. For complete details, see Oh, C. H.; Posner, G. H.
Syntheses and Iron(II) Induced Reactions of Phenyl-Substituted
1,2,4-Trioxanes. Bull. Korean Chem. Soc. 1997, 18, 644-648.
(49) At some point after the work described herein, 2-(2′-cyanoethyl)-
cyclohexanone (13) became no longer commonly commercially
available.
(50) Reitz, A. B.; Nortey, S. O.; J ordan, A. D., J r.; Mutter, M. S.;
Maryanoff, B. E. Dramatic Concentration Dependence of Ster-
eochemistry in the Wittig Reaction. Examination of the Lithium
Salt Effect. J . Org. Chem. 1986, 51, 3302-3308.
(51) J ohnson, A. W. Ylides and Imines of Phosphorus; J ohn Wiley:
New York, 1993; Chapter 8.1.5.
(52) Tidwell, T. T. Oxidation of Alcohols by Activated Dimethyl
Sulfoxide and Related Reactions: An Update. Synthesis 1990,
857-870.
(53) Mancuso, A. J .; Swern, D. Activated Dimethyl Sulfoxide: Useful
Reagents for Synthesis. Synthesis 1981, 165-185.
(54) For synthetic details on the preparation of C4â-(hydroxymethyl)-
trioxane 5b, see: Posner, G. H.; Ploypradith, P.; Hapangama,
W.; Wang, D.; Cumming, J . N.; Dolan, P.; Kensler, T. W.;
Klinedinst, D.; Shapiro, T. A.; Zheng, Q. Y.; Murray, C. K.;
Pilkington, L. G.; J ayasinghe, L. R.; Bray, J . F.; Daughenbaugh,
R. Trioxane Dimers Have Potent Antimalarial, Antiproliferative
and Antitumor Activities In Vitro. Bioorg. Med. Chem. 1997, 5,
1257-1265.
(34) Posner, G. H.; Oh, C. H.; Gerena, L.; Milhous, W. K. Synthesis
and Antimalarial Activities of Structurally Simplified 1,2,4-
Trioxanes Related to Artemisinin. Heteroatom Chem. 1995, 6,
105-116.
(35) Posner, G. H.; Oh, C. H.; Gerena, L.; Milhous, W. K. Extraor-
dinarily Potent Antimalarial Compounds: New, Structurally
Simple, Easily Synthesized, Tricyclic 1,2,4-Trioxanes. J . Med.
Chem. 1992, 35, 2459-2467.
(36) Fleck, S. L.; Robinson, B. L.; Peters, W. The Chemotherapy of
Rodent Malaria. LIV. Combinations of ‘Fenozan B07’ (Fenozan-
50F), a Difluorinated 3,3′-Spirocyclopentane 1,2,4-Trioxane, with
Other Drugs Against Drug-Sensitive and Drug-Resistant Para-
sites. Ann. Trop. Med. Parasitol. 1997, 91, 33-39.
(37) Posner, G. H.; Oh, C. H.; Webster, K.; Ager, A. L., J r.; Rossan,
R. N. New, Antimalarial, Tricyclic 1,2,4-Trioxanes: Preclinical
Evaluation in Mice and Monkeys. Am. J . Trop. Med. Hyg. 1994,
50, 522-526.
(38) Grigorov, M.; Weber, J .; Tronchet, J . M. J .; J efford, C. W.;
Milhous, W. K.; Maric, D. A QSAR Study of the Antimalarial
Activity of Some Synthetic 1,2,4-Trioxanes. J . Chem. Inf. Com-
put. Sci. 1997, 37, 124-130.
(55) Richardson, D. P.; Carr, P. W.; Cumming, J . N.; Harbison, W.
G.; Raoof, N. D.; Sanders, M. S.; Shin, E.; Smith, T. E.; Wintner,
T. H. Stereoselective Synthesis of 7R-Paeonimetaboline-I.; Ste-
reoselective Route Towards Paeoniflorigenone. Tetrahedron Lett.
1997, 38, 3817-3820.
(56) McDougal, P. G.; Rico, J . G.; Oh, Y. I.; Condon, B. C. A
Convenient Procedure for the Monosilylation of Symmetric 1,n-
Diols. J . Org. Chem. 1986, 51, 3388-3390.
(57) LeFevre, G. N.; Crawford, R. J . Intramolecular Steric Factors
in the Thermolysis of 4-Alkylidene-1-pyrazolines. J . Am. Chem.
Soc. 1986, 108, 1019-1027.
(58) Corey, E. J .; Kim, C. U.; Takeda, M. A Method for Selective
Conversion of Allylic and Benzylic Alcohols to Halides Under
Neutral Conditions. Tetrahedron Lett. 1972, 13, 4339-4342.
(59) For example, see Hart, D. J .; Hong, W. P.; Hsu, L. Y. Total
Synthesis of (()-Lythrancepine II and (()-Lythrancepine III. J .
Org. Chem. 1987, 52, 4665-4673.
(39) Avery, M. A.; Fan, P.; Karle, J . M.; Bonk, J . D.; Miller, R.; Goins,
D. K. Structure-Activity Relationships of the Antimalarial
Agent Artemisinin. 3. Total Synthesis of (+)-13-Carbaartemisi-
nin and Related Tetra- and Tricyclic Structures. J . Med. Chem.
1996, 39, 1885-1897.
(40) O’Neill, P. M.; Bishop, L. P.; Searle, N. L.; Maggs, J . L.; Ward,
S. A.; Bray, P. G.; Storr, R. C.; Park, B. K. The Biomimetic Iron-
Mediated Degradation of Arteflene (Ro-42-1611), an Endoper-
oxide Antimalarial: Implications for the Mechanism of Antima-
larial Activity. Tetrahedron Lett. 1997, 38, 4263-4266.
(41) Posner, G. H.; Wang, D.; Cumming, J . N.; Oh, C. H.; French, A.
N.; Bodley, A. L.; Shapiro, T. A. Further Evidence Supporting
(60) Posner, G. H.; Cumming, J . N.; Ploypradith, P.; Oh, C. H.
Evidence for Fe(IV)dO in the Molecular Mechanism of Action
of the Trioxane Antimalarial Artemisinin. J . Am. Chem. Soc.
1995, 117, 5885-5886.
(61) CRC Handbook of Chemistry and Physics, 76th ed.; Lide, D. R.;
Frederikse, H. P. R., Eds.; CRC Press: Boca Raton, FL, 1995;
9-73.
(62) Auner, N.; Walsh, R.; Westrup, J . Kinetic Determination of the
Bond Dissociation Energy D(Me3SiCMe2CH2-H) and the Mag-
nitude of the Stabilization Energy in a â-Silicon-substituted
Alkyl Radical. J . Chem. Soc., Chem. Commun. 1986, 207-208.
(63) For an overview of olefin forming â-elimination reactions, see
Motherwell, W. B.; Crich, D. Free Radical Chain Reactions in
Organic Synthesis; Academic Press: San Diego, 1992; Chapter
4.
the Importance of and Restrictions on
a Carbon-Centered
Radical for High Antimalarial Activity of 1,2,4-Trioxanes Like
Artemisinin. J . Med. Chem. 1995, 38, 2273-2275.
(42) J efford, C. W.; Favarger, F.; Vicente, M. H.; J acquier, Y. 35. The
Decomposition of cis-Fused Cyclopenteno-1,2,4-trioxanes In-
duced by Ferrous Salts and Some Oxophilic Reagents. Helv.
Chim. Acta 1995, 78, 452-458.
(64) Ponnudurai, T.; Leeuwenberg, A. D. E. M.; Meuwissen, J . H. E.
T. Chloroquine Sensitivity of Isolates of Plasmodium falciparum
Adapted to In Vitro Culture. Trop. Geogr. Med. 1981, 33, 50-
54.