1316
S. Sergeyev, M. Hesse
LETTER
CH2Cl2 (75 mL) and H2O (50 mL), the organic phase was
separated and washed with H2O (2 50 mL), dried (MgSO4),
and concentrated to afford crude 7a. It was dissolved in
CH2Cl2 (20 mL) and treated with TFA (6.1 mL, 80 mmol) in
one portion. After 4 h stirring at r.t. the mixture was
concentrated and the residue was dried in vacuo to give
crude 8a as TFA salt. It was dissolved in the mixture of
CH2Cl2 (75 mL) and Et3N (8.3 mL, 60 mmol) and treated
dropwise at 0 °C with 3-phenylpropanoyl chloride (2.83 mL,
19 mmol). The mixture was stirred for 1 h at 0 °C, then
allowed to reach r.t., washed with H2O (25 mL), 10% aq
citric acid (25 mL), again H2O (2 25 mL), and dried
(MgSO4). Evaporation of the solvent in vacuo and
crystallization of the residue from hexane/EtOAc afforded
9a (3.82 g, 94% total yield after 3 steps). Slightly yellow
solid, mp 51–52 °C.
This approach, obviously, provides also a competitive al-
ternative to the known methods for the preparation of ter-
tiary enamides. In addition, it can be of value as a method
for removal of N-allyl protecting group from amides
(isomerization to enamide followed by acidic hydrolysis).
Acknowledgement
We thank the Swiss National Science Foundation for financial sup-
port of this work.
References
(1) Wenkert, E.; Hudlicky, T.; Showalter, H. D. J. Am. Chem.
Soc. 1978, 100, 4893.
(2) Tsuda, Y.; Isobe, K.; Ukai, A. J. Chem. Soc., Chem.
Commun. 1971, 1554.
(3) Becker, Y.; Eisenstadt, A.; Stille, J. K. J. Org. Chem. 1980,
45, 2145.
(4) Bach, T. Angew. Chem., Int. Ed. Engl. 1996, 35, 884.
(5) Kinderman, S. S.; van Maarseveen, J. H.; Schoemaker, H.
E.; Hiemstra, H.; Rutjes, F. P. Org. Lett. 2001, 3, 2045.
(6) (a) Breederveld, H. Recl. Trav. Chim. Pays-Bas 1960, 79,
401. (b) Breederveld, H. Recl. Trav. Chim. Pays-Bas 1960,
79, 1197.
(7) (a) Lenz, G. R. Synthesis 1978, 489. (b) Campbell, A. L.;
Lenz, G. R. Synthesis 1987, 421.
(8) Meth-Cohn, O.; Westwood, K. T. J. Chem. Soc., Perkin
Trans. 1 1984, 1173.
1H NMR (CDCl3): = 1.65 (s, 3 H, Me), 2.51 (t, 2 H, J = 7.7
Hz, CH2CO), 2.96 (t, 2 H, J = 7.7 Hz, CH2Ph), 3.75 (d, 2 H,
J = 6.0 Hz, CH2N), 4.68, 4.76 (2 s-like m, 2 H, CH2=C), 5.80
(br s, NH), 7.15–7.28 (m, 5 H, Ph). 13C NMR (CDCl3):
20.1 (Me), 31.6 (CH2Ph), 38.3 (CH2CO), 44.9 (CH2N),
110.7 (CH2=C), 126.1 (arom. CH), 128.2 (2 arom. CH),
=
128.4 (2 arom. CH), 140.7 (C), 141.8 (C), 172.0 (C=O). CI-
MS (NH3): m/z (%) = 407(29) [2 M + 1]+, 221(25) [M +
NH4]+, 204(100) [2 M + 1]+.
(21) Preparation of 2a/2a (Typical Procedure for the
Isomerization of N-Allylamides to N-Prop-1-
enylamides). A mixture of 1a (945 mg, 5 mmol) and
Fe(CO)5 (0.2 mL, 1 mmol) was stirred under Ar for 16 h at
100 °C. The mixture was allowed to reach r.t., then the
catalyst was removed in vacuo and collected in a trap, cooled
by liquid N2. Content of the trap was treated with 5%
alcoholic FeCl3 solution to destroy toxic Fe(CO)5. The
residue in the reaction flask was dissolved in CHCl3 and
filtered through Celite. Evaporation of the solvent in vacuo
and column chromatography of the residue on silica gel
(CH2Cl2/EtOAc 10:1) afforded 2a (548 mg, 58%) and 2a
(350 mg, 37%), total yield of 2a/2a 95%.
(9) (a) Suen, Y. H.; Horeau, A.; Kagan, H. B. Bull. Soc. Chim.
Fr. 1965, 1454. (b) Kagan, H. B.; Horeau, A.; Suen, Y. H.
Bull. Soc. Chim. Fr. 1965, 1457.
(10) (a) Eiden, F.; Nagar, B. S. Arch. Pharm. (Weinheim, Ger.)
1964, 297, 367. (b) Eiden, F.; Nagar, B. S. Arch. Pharm.
(Weinheim, Ger.) 1963, 296, 458. (c) Eiden, F.; Nagar, B. S.
Arch. Pharm. (Weinheim, Ger.) 1963, 296, 445.
(11) Ben-Ishai, D.; Giger, R. Tetrahedron. Lett. 1965, 4523.
(12) (a) Kurtz, P.; Disselnkötter, H. Liebigs Ann. Chem. 1972,
764, 69. (b) Brettle, R.; Shibib, S. M.; Wheeler, K. J. J.
Chem. Soc., Perkin Trans. 1 1985, 831.
(13) (a) Fürstner, A.; Dierkes, T.; Thiel, O. R.; Blanda, G.
Chem.–Eur. J. 2001, 7, 5286. (b) Stefanuti, I.; Smith, S. A.;
Taylor, R. J. K. Tetrahedron Lett. 2000, 41, 3735. (c) Shen,
R.; Porco, J. A. Org. Lett. 2000, 2, 1333.
(14) Larock, R. C. Comprehensive Organic Transformations;
Wiley: New York, 1999.
(15) Stille, J. K.; Becker, Y. J. Org. Chem. 1980, 45, 2139.
(16) This work is a part of the Ph.D. Thesis of S. Sergeyev,
University of Zürich, 2002.
(17) Hubert, J.; Moniotte, P.; Goebbels, G.; Warin, R.; Teyssié,
P. J. Chem. Soc., Perkin Trans. 2 1973, 1954.
(18) Boc2NH represents an exellent alternative to the classical
Gabriel method for preparation of amines from halides:
(a) Grehn, L.; Ragnarson, U. Synthesis 1987, 285.
(b) Grehn, L.; Ragnarson, U. Acc. Chem. Res. 1991, 24, 285;
and references cited therein.
(19) We have shown that the use of Cs2CO3 as the phase-transfer
catalyst allows to avoid the preparation of Na or K salt of
Boc2NH, see ref.18a
(20) Preparation of N-(2-Methylprop-2-enyl)-3-
phenylpropanamide 9a (Typical Procedure for the
Preparation of Substituted N-Allylamides 9a–d). A
mixture of 6a (4.0 mL, 40 mmol), Boc2NH (4.34 g, 20
mmol), Cs2CO3 (6.52 g, 20 mmol), and DMF (20 mL) was
stirred for 12 h at r.t., then the volatile materials were
removed in vacuo. The residue was partitioned between
(E)-3-Phenyl-N-prop-1-enyl-propanamide(2a). Colorless
solid, mp 113–114.5 °C.
1H NMR (CDCl3): = 1.62 (dd, 3 H, J = 1.7, 6.7 Hz, Me),
2.49 (t, 2 H, J = 7.8 Hz, CH2CO), 2.95 (t, 2 H, J = 7.8 Hz,
CH2Ph), 5.09 (qd, 1 H, J = 6.7, 14.2 Hz, CH=CHN), 6.71–
6.78 (m, 1 H, CH=CHN), 7.15–7.28 (m, 5 H, Ph), 7.40 (br d,
NH). 13C NMR (CDCl3): = 14.7 (Me), 31.4 (CH2Ph), 38.1
(CH2CO), 107.8 (CH=CHN), 123.1 (CH=CHN), 126.2
(arom. CH), 128.2 (2 arom. CH), 128.4 (2 arom. CH), 140.6
(arom. C), 169.2 (C=O). CI-MS (NH3): m/z (%) =
207(37)[M + NH4]+), 190(100) [M + 1]+).
(Z)-3-Phenyl-N-prop-1-enyl-propanamide (2a ).
Colorless solid, mp 53.5–55 °C.
1H NMR (CDCl3): = 1.49 (dd, 3 H, J = 1.5, 7.0 Hz, Me),
2.57 (t, 2 H, J = 7.7 Hz, CH2CO), 2.96 (t, 2 H, J = 7.7 Hz,
CH2Ph), 4.73 (qd, 1 H, J = 7.0, 8.9 Hz, CH=CHN), 6.64–
6.71 (m, 1 H, CH=CHN), 7.16–7.28 (m, 6 H, Ph, NH). 13
C
NMR (CDCl3): = 10.7 (Me), 31.4 (CH2Ph), 38.0 (CH2CO),
105.3 (CH=CHN), 121.8 (CH=CHN), 126.2 (arom. CH),
128.2 (2 arom. CH), 128.5 (2 arom. CH), 140.5 (arom. C),
169.5 (C=O). CI-MS (NH3): m/z (%) = 207(48) [M + NH4]+,
190(100) [M + 1]+).
(22) E/Z ratio was determined from the integral intensities of the
signals of CH=CHN, (E)- or (Z)-configuration of double
bond was assigned based on the value of coupling constants
(typically 13.5–14.2 Hz for (E)- and 8.5–9.0 Hz for (Z)-
enamides).
(23) It should be noted, that our findings are in contrast with those
of Stille and Becker, reported decomposition of N-(3,3-
Synlett 2002, No. 8, 1313–1317 ISSN 0936-5214 © Thieme Stuttgart · New York