New thiodiketopiperazines from the marine-derived fungus
T Fukuda et al
8
20 Nagai, K. et al. Synthesis and biological evaluation of a beauveriolide analogue library.
J. Comb. Chem. 8, 103–109 (2006).
1
Centers for Disease Control and Prevention (CDC). Staphylococcus aureus with reduced
susceptibility to vancomycin–United States. MMWR Morb. Mortal. Wkly. Rep. 46,
765–766 (1997).
Hiramatsu, K. et al. Methicillin-resistant Staphylococcus aureus clinical strain with
reduced vancomycin susceptibility. J. Antimicrob. Chemother. 40, 135–136 (1997).
Marshall, J. H. & Wilmoth, G. J. Pigments of Staphylococcus aureus, a series of
triterpenoid carotenoids. J. Bacteriol. 147, 900–913 (1981).
21 Brian, P. W.
& Hemming, H. G. Gliotoxin, a fungistatic metabolic product of
Trichoderma viride. Ann. Appl. Biol. 32, 214–220 (1945).
22 Kong, F., Wang, Y., Liu, P., Dong, T. & Zhu, W. Thiodiketopiperazines from the
marine-derived fungus Phoma sp. OUCMDZ-1847. J. Nat. Prod. 77, 132–137
(2014).
23 Wang, J. M. et al. Thiodiketopiperazines produced by the endophytic fungus Epicoccum
nigrum. J. Nat. Prod. 73, 1240–1249 (2010).
24 Deffieux, G., Baute, M. A., Baute, R. & Filleau, M. J. New antibiotics from the fungus
Epicoccum nigrum. II. Epicorazine A: structure elucidation and absolute configuration.
J. Antibiot. (Tokyo) 31, 1102–1105 (1978).
25 Tan, R. X., Jensen, P. R., Williams, P. G. & Fenical, W. Isolation and structure
assignments of rostratins A-D, cytotoxic disulfides produced by the marine-derived
fungus Exserohilum rostratum. J. Nat. Prod. 67, 1374–1382 (2004).
26 Suzuki, Y. et al. Haematocin, a new antifungal diketopiperazine produced by Nectria
haematococca Berk. et Br. (880701a-1) causing nectria blight disease on
ornamental plants. J. Antibiot. (Tokyo) 53, 45–49 (2000).
27 Chai, C. L., Elix, J. A., Huleatt, P. B. & Waring, P. Scabrosin esters and derivatives:
chemical derivatization studies and biological evaluation. Bioorg. Med. Chem. 12,
5991–5995 (2004).
28 Meng, L. H., Li, X. M., Lv, C. T., Huang, C. G. & Wang, B. G. Brocazines A-F, cytotoxic
bisthiodiketopiperazine derivatives from Penicillium brocae MA-231, an endophytic
fungus derived from the marine mangrove plant Avicennia marina. J. Nat. Prod. 77,
1921–1927 (2014).
29 Gross, U., Nieger, M. & Brase, S. A unified strategy targeting the thiodiketopiperazine
mycotoxins exserohilone, gliotoxin, the epicoccins, the epicorazines, rostratin A and
aranotin. Chem. Eur. J 16, 11624–11631 (2010).
30 Hegde, V. R., Dai, P., Patel, M., Das, P. R. & Puar, M. S. Novel thiodiketopiperazine
fungal metabolites as epidermal growth factor receptor antagonists. Tet. Lett. 38,
911–914 (1997).
2
3
4
Marshall, J. H.
& Wilmoth, G. J. Proposed pathway of triterpenoid carotenoid
biosynthesis in Staphylococcus aureus: evidence from a study of mutants. J. Bacteriol.
147, 914–919 (1981).
Clauditz, A., Resch, A., Wieland, K. P., Peschel, A. & Goötz, F. Staphyloxanthin plays a
role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress.
Infect. Immun. 74, 4950–4953 (2006).
Liu, G. Y. et al. Staphylococcus aureus golden pigment impairs neutrophil killing
and promotes virulence through its antioxidant activity. J. Exp. Med. 202,
209–215 (2005)
Liu, C. I. et al. A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus
virulence. Science 319, 1391–1394 (2008).
Song, Y. et al. Inhibition of staphyloxanthin virulence factor biosynthesis in Staphylo-
coccus aureus: in vitro, in vivo, and crystallographic results. J. Med. Chem. 52,
3869–3880 (2009).
Liu, C. I., Jeng, W. Y., Chang, W. J., Ko, T. P. & Wang, A. H. Binding modes of zaragozic
acid A to human squalene synthase and staphylococcal dehydrosqualene synthase. J.
Biol. Chem. 287, 18750–18757 (2012).
5
6
7
8
9
10 Lee, J. H. et al. Indole and 7-benzyloxyindole attenuate the virulence of Staphylococcus
aureus. Appl. Microbiol. Biotechnol. 97, 4543–4552 (2013).
11 Lee, J. H., Park, J. H., Cho, M. H. & Lee, J. Flavone reduces the production of virulence
factors, staphyloxanthin and α-hemolysin, in Staphylococcus aureus. Curr. Microbiol.
65, 726–732 (2012).
12 Sakai, K. et al. Method of search for microbial inhibitors of staphyloxanthin production
by MRSA. Biol. Pharm. Bull. 35, 48–53 (2012).
13 Fukuda, T., Nagai, K. & Tomoda, H. ( )-Tylopilusins, diphenolic metabolites from the
31 Chinworrungsee, M., Kittakoop, P., Saenboonrueng, J., Kongsaeree, P.
& Thebt-
aranonth, Y. Bioactive compounds from the seed fungus Menisporopsis theobromae
BCC 3975. J. Nat. Prod. 69, 1404–1410 (2006).
32 Kawashima, A., Yoshimura, Y., Mizutani, T., Hanada, K. & Omura, S. Jpn. Kokai Tokkyo
Koho Patent No. JP2062880 (19900302) (1990).
33 Trown, P. W. et al. LL-S88-alpha, an antiviral substance produced by Aspergillus
terreus. Antimicrob. Agents Chemother. 8, 225–228 (1968).
fruiting bodies of Tylopilus eximius. J. Nat. Prod. 75, 2228–2231 (2012).
14 Fukuda, T., Shimoyama, T., Nagamitsu, T.
&
Tomoda, H. Synthesis and
biological activity of citridone
A and its derivatives. J. Antibiot. (Tokyo) 67,
445–450 (2014).
15 Guo, C. J. et al. Biosynthetic pathway for the epipolythiodioxopiperazine acetylaration in
Aspergillus terreus revealed by genome-based deletion analysis. J. Am. Chem. Soc.
135, 7205–7213 (2013).
34 Zhang, Y., Liu, S.
& Liu, X. Epicoccins A-D, epipolythiodioxopiperazines from a
Cordyceps-colonizing isolate of Epicoccum nigrum. J. Nat. Prod. 70,
1522–1525 (2007).
16 Kobayashi, K. et al. Bafilomycin L, a new inhibitor of cholesteryl ester synthesis in
mammalian cells, produced by marine-derived Streptomyces sp. OPMA00072. J.
Antibiot. (Tokyo) 68, 126–132 (2015).
35 Iwatsuki, M. et al. Lariatins, novel anti-mycobacterial peptides with
structure, produced by Rhodococcus jostii K01-B0171. J. Antibiot. 60,
357–363 (2007).
a lasso
17 Kurihara, Y. et al. Entomopathogenic fungi isolated from suspended-soil-inhabiting
arthropods in East Kalimantan, Indonesia. Mycoscience 49, 241–249 (2008).
18 Neuss, N. et al. Aranotin and related metabolites from Arachniotus aureus (Eidam)
Schroeter. IV. Fermentation, isolation, structure elucidation, biosynthesis, and antiviral
properties. Antimicrob. Agents Chemother. 8, 213–219 (1968).
19 Wang, J. M. et al. Study on absolute configurations of α/α’ chiral carbons of
thiodiketopiperazines by experimental and calculated circular dichroism spectra.
Tetrahedron 69, 1195–1201 (2013).
36 Hagimori, K., Fukuda, T., Hasegawa, Y., Omura, S. & Tomoda, H. Fungal malformins
inhibit bleomycin-induced G2 checkpoint in Jurkat cells. Biol. Pharm. Bull. 30,
1379–1383 (2007).
37 Ohshiro, T. & Tomoda, H. Isoform-specific inhibitors of ACATs: recent advances and
promising developments. Future Med. Chem. 3, 2039–2061 (2011).
38 Fukuda, T. et al. Trichocyalides A and B, new inhibitors of alkaline phosphatase activity
in bone morphogenetic protein-stimulated myoblasts, produced by Trichoderma sp.
FKI-5513. J. Antibiot. (Tokyo) 65, 565–569 (2012).
The Journal of Antibiotics