metal.2,5 Some tandem reactions, however, occur with
lower loadings of catalyst presumably because product
inhibition and isomerization are avoided.2a,4a These rela-
tively high loadings of catalyst and additives narrow the
industrial applications of these systems. We reasoned that
immobilization of the catalyst would provide higher turn-
over numbers (TONs) by allowing catalyst reuse, thereby
avoiding product inhibition and isomerization that may
occur during high TON homogeneous reactions. Further,
the use of a heterogeneous catalyst would allow for a wide
rangeof solvents asthe solvent wouldno longerbe required
to dissolve the catalyst.
polymerization (altROMP) between trans-Ru(2)Cl2Py2 (1,
where 2 = (R)-5,50-dinorimido-BINAP14) and cis-cyclooc-
tene (COE) using RuCl2(=CHPh)(PCy3)2 (3) as a catalyst to
assemble a catalyst-organic framework cross-linked with
1.15,16 This Ru-based catalyst-organic framework was reused
for an enantioselective ketone hydrogenation with high TONs
per run (g1000) for 25 runs before loss in activity occurred.
More than 35 reuses were carried out without loss in enantios-
electivity or detectable leaching of Ru. We now report the
preparation of a Rh-BINAP-containing catalyst-organic
framework and its reuse as a catalyst for the enantioselective
cycloisomerization of 1,6-enynes.
Two general approaches to separate the catalyst and reac-
tant phases in enantioselective catalysis are the use of multi-
phase solvent mixtures (e.g., aqueous/organic,6 supercritical
CO2,7 fluorous catalysts and solvents,8 and ionic liquids9) and
catalyst immobilization. Homogeneous catalysts are immobi-
lized through noncovalent and covalent interactions with a
support. The noncovalent interactions10 include electrostatic
attractions between ionic catalysts and supports, physisorp-
tion onto the support, hydrogen bonding, and encapsulation
within the support. Covalent immobilization techniques11
include the formation of metalꢀsupport bonds and formation
of bonds between a modified ligand and an inorganic or
organic support. Copolymerization of modified catalyst li-
gands or grafting modified ligands onto polymeric supports is
often carried out by incorporating the ligand into the support
first, followed by metalating the incorporated ligand. The
result is often incomplete metalation of the ligand-polymer
support and poor mass transport at the active sites, leading to
low catalyst activity and poor reusability. The direct polymer-
ization of metal-containing monomers (MCM) ensures that
ligand-containing sites on the polymer are metalated,12 but
mass transport at the active sites must still be addressed. We
recently reported13 an alternating ring-opening metathesis
We synthesized the chloro-bridged Rh complex
[RhCl(2)]2 (4) by reacting 2 with [RhCl(C2H4)2]2 in
CH2Cl2.17,18 4 was used immediately for altROMP with-
out isolation to avoid its decomposition.
We found that 4 readily underwent altROMP assembly
with COE and 3 (3/4/COE = 1:10:120, 40 °C, 24 h, CH2Cl2)
(14) 2 was prepared in one step from the known diamine precursor.
See: (a) Okano, T. K. H.; Akutagawa, S.; Kiji, J.; Konishi, H.;
Fukuyama, K.; Shimano, Y. U.S. Patent 4,705,895, 1987. (b) Berthod,
M.; Mignani, G.; Woodward, G.; Lemaire, M. Chem. Rev. 2005, 105, 1801.
(15) For examples of BINAP-containing polymers, see: (a) ter Halle,
R.; Colasson, B.; Schulz, E.; Spagnol, M.; Lemaire, M. Tetrahedron
Lett. 2000, 41, 643. (b) Saluzzo, C.; Lamouille, T.; Le Guyader, F.;
Lemaire, M. Tetrahedron: Asymmetry 2002, 13, 1141. (c) Fan, Q. H.;
Ren, C. Y.; Yeung, C. H.; Hu, W. H.; Chan, A. S. C. J. Am. Chem. Soc.
1999, 121, 7407. (d) Fan, Q. H.; Wang, R.; Chan, A. S. C. Bioorg. Med.
Chem. Lett. 2002, 12, 1867. (e) Fan, Q. H.; Deng, G. J.; Lin, C. C.; Chan,
A. S. C. Tetrahedron: Asymmetry 2001, 12, 1241. (f) Pu, L. Chem.;Eur.
J. 1999, 5, 2227. (g) Yu, H. B.; Hu, Q. S.; Pu, L. Tetrahedron Lett. 2000,
41, 1681. (h) Framery, E.; Andrioletti, B.; Lemaire, M. Tetrahedron:
Asymmetry 2010, 21, 1110. (i) Saluzzo, C.; Lemaire, M. Adv. Synth.
Catal. 2002, 344, 915. (j) Hu, A.; Ngo, H. L.; Lin, W. B. J. Am. Chem.
Soc. 2003, 125, 11490. (k) Org. Lett. 2004, 6, 2937. (l) Wang, P.; Liu, X.;
Yang, J.; Yang, Y.; Zhang, L.; Yang, Q.; Li, C. J. Mater. Chem. 2009, 19,
(6) (a) Dwars, T.; Oehme, G. Adv. Synth. Catal. 2002, 344, 239. (b)
ꢀ
Joo, F. Acc. Chem. Res. 2002, 35, 738. (c) Pinault, N.; Bruce, D. W.
Coord. Chem. Rev. 2003, 241, 1.
(7) Gordon, C. M.; Leitner, W. Homogeneous Catalysis in Super-
critical Solvents as a Special Unit Operation. In Multiphase Homoge-
neous Catalysis; Cornils, B., Herrmann, W. A., Vogt, D., Horvath, I., Olivier-
Bourbigon, H., Leitner, W., Mecking, S., Eds.; Wiley-VCH: Weinheim,
Germany, 2005.
(8) (a) Handbook of Fluorous Chemistry; Gladysz, J. A., Curran, D. P.,
ꢀ
Horvath, I., Eds.; Wiley-VCH: Weinheim, Germany, 2004. (b) de Wolf, E.;
ꢀ
van Koten, G.; Deelman, B.-J. Chem. Soc. Rev. 1999, 28, 37. (c) Horvath,
I. T. Acc. Chem. Res. 1998, 31, 641.
(9) (a) Welton, T. Coord. Chem. Rev. 2004, 248, 2459. (b) Sheldon, R.
Chem. Commun. 2001, 2399. (c) Wasserscheid, P.; Keim, W. Angew.
Chem., Int. Ed. 2000, 39, 3772.
(10) For recent reviews, see: (a) Fraile, J. M.; Garcıa, J. I.; Mayoral,
J. A. Chem. Rev. 2009, 109, 360. (b) Heitbaum, M.; Glorius, F.; Escher, I.
Angew. Chem., Int. Ed. 2006, 45, 4732. (c) McMorn, P.; Hutchings, G. J.
Chem. Soc. Rev. 2004, 33, 108. (d) Zhao, X. S.; Bao, X. Y.; Guo, W.; Lee,
F. Y. Mater. Today 2006, 9, 32.
^
8009. (m) Guerreiro, P.; Ratovelomanana-Vidal, V.; Genet, J.-P.; Dellis,
P. Tetrahedron Lett. 2001, 42, 3423.
(16) For examples of use of ROMP to prepare polymeric catalysts,
see: (a) Chen, B.; Sleiman, H. F. Macromolecules 2004, 37, 5866. (b)
Fuchter, M. J.; Hoffman, B. M.; Barrett, A. G. M. J. Org. Chem. 2006,
71, 724. (c) Sankaran, N. B.; Rys, A. Z.; Nassif, R.; Nayak, M. K.;
Metera, K.; Chen, B.; Bazzi, H. S.; Sleiman, H. F. Macromolecules 2010,
43, 5530. (d) Carlisle, J. R.; Wang, X.-Y.; Weck, M. Macromolecules
2005, 38, 9000. (e) Dragutan, V.; Dragutan, I.; Fischer, H. J. Inorg.
Organomet. Polym. 2008, 18, 18. (f) Dragutan, V.; Dragutan, I.; Fischer,
H. J. Inorg. Organomet. Polym. 2008, 18, 311.
(11) For recent reviews, see: (a) Dioos, B. M. L.; Vankelecom, I. F. J.;
Jacobs, P. A. Adv. Synth. Catal. 2006, 348, 1413. (b) Leadbeater, N. E.;
Marco, M. Chem. Rev. 2002, 102, 3217. (c) Fan, Q.-H.; Li, Y.-M.; Chan,
A. S. C. Chem. Rev. 2002, 102, 3385. (d) Wang, Z.; Chen, G.; Ding, K.
Chem. Rev. 2009, 109, 322. (e) Ding, K.; Wang, Z.; Wang, X.; Liang, Y.;
Wang, X. Chem.;Eur. J. 2006, 12, 5188. For MOFs, see:(f) Liu, Y.;
Xuan, W.; Cui, Y. Adv. Mater. 2010, 22, 4112. (g) Corma, A.; Garcıa, H.;
(17) Tokunaga, N.; Yoshida, K.; Hayashi, T. Proc. Natl. Acad. Sci.
U.S.A. 2004, 101, 5445.
(18) 2 is initially formed as a mixture of three NMR distinct diaster-
eomeric atropisomers that differ in the rotameric orientations of the
norimido groups about the areneꢀnitrogen bonds. However 2 precipi-
tated from 90 °C solutions of toluene as one C2 dissymmetric diastereo-
meric atropisomer, which was then used in the synthesis of 4. See ref 13
for more details.
ꢀ
Llabres i Xamena, F. X. Chem. Rev. 2010, 110, 4606. (h) Ma, L.; Abney,
C.; Lin, W. B. Chem. Soc. Rev. 2009, 38, 1248.
(12) Mastrorilli, P.; Nobile, C. F. Coord. Chem. Rev. 2004, 248, 377.
(13) Ralph, C. K.; Bergens, S. H. Organometallics 2007, 26, 1571.
Org. Lett., Vol. 13, No. 13, 2011
3523