74
F. Zhang et al. / Inorganic Chemistry Communications 14 (2011) 72–74
Table 1
Polymerization of rac-lactide (LA) catalyzed by complex 3 and 4a.
O
O
O
O
O
O
complex
O
O
O
m
O
+
O n
O
O
O
O
O
rac-Lactide
Isotactic Polylactide
b
b
c
Entry
Precatalyst
T (°C)
Solvent
Conv. (%)
100
100
100d
100d
85
Mn (kg/mol)
Mw/Mn
Pm (%)
1
2
3
4
5
6
7
8
3
4
3
4
3
4
3
4
20
20
40
40
20
20
40
40
Toluene
Toluene
Toluene
Toluene
THF
THF
THF
THF
70.3
69.5
71.3
70.4
65.4
67.8
67.2
68.7
1.28
1.34
1.21
1.24
1.32
1.30
1.34
1.29
68
59
71
62
68
60
66
63
90
95d
98d
a
Conditions: precat./LA (mol/mol)=1/1000; polymerization time, 2 h; solvent, 5 mL; [LA]=1.0 mol/L.
Measured by GPC (using polystyrene standards in THF).
b
c
Pm is the probability of meso linkages between monomer units and is determined from the methine region (5.30–5.00 ppm) of the homonuclear decoupled 1H NMR spectrum in
CDCl3 at 25 °C [23–26].
d
Polymerization time, 0.5 h.
131.4, 131.0, 129.7, 128.3, 128.0, 125.7, 124.9, 124.5, 124.4, 124.3, 123.8, 122.7,
122.2, 24.4, 21.7, 4.1, 3.1. IR (KBr, cm−1): ν 3310 (m), 2936 (m), 1722 (s), 1471
(s), 1389 (s), 1270 (s), 1159 (s), 972 (s), 753 (s). Anal. Calcd for C52H71N4O2Si4Y:
Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2
Supplementary material with this article can be found, in the online
version, at doi:10.1016/j.inoche.2010.09.034.
C, 63.38; H, 7.26; N, 5.69. Found: C, 63.49; H, 7.06; N, 5.77%. Preparation of 4·C6H12
.
This compound was prepared as colorless crystals from the reaction of 2 (0.23 g,
0.5 mmol) with Y[N(SiMe3)2]3 (0.28 g, 0.5 mmol) in toluene (20 mL) and
recrystallization from a cyclohexane solution by a similar procedure as in the
synthesis of 3. Yield: 0.40 g (85%). M.p.: 169–171 °C (dec.). 1H NMR (C6D6): δ 7.81
(d, J=9.2 Hz, 1H, aryl), 7.63 (m, 2H, aryl), 7.44 (d, J=8.1 Hz, 1H, aryl), 7.28 (d,
J=8.9 Hz, 1H, aryl), 7.14 (d, J=9.6 Hz, 1H, aryl), 7.05 (m, 2H, aryl), 6.92 (m, 2H,
aryl), 6.85 (s, 1H, aryl), 6.79 (m, 1H, aryl), 6.50 (s, 2H, aryl), 2.81 (s, 3H, CH3), 2.70
(s, 6H, NCH3), 2.09 (s, 3H, CH3), 1.65 (s, 3H, CH3), 1.43 (s, 12H, C6H12), 0.46 (s,
18H, Si(CH3)3), 0.27 (s, 18H, Si(CH3)3). 13C NMR (C6D6): δ 182.0, 145.1, 141.1,
138.5, 136.3, 134.5, 134.3, 133.9, 132.7, 131.6, 130.7, 130.2, 128.9, 128.5, 128.4,
127.3, 126.8, 126.6, 126.1, 125.6, 124.6, 123.4, 119.4, 47.4, 27.0, 22.8, 20.5, 6.1, 5.4.
IR (KBr, cm−1): ν 2961 (m), 2932 (w), 1612 (m), 1455 (s), 1417 (s), 1259 (s),
1093 (s), 1066 (s), 1014 (s), 929 (s), 797 (s). Anal. Calcd for C50H77N4OSi4Y: C,
63.12; H, 8.16; N, 5.89. Found: C, 63.23; H, 8.07; N, 5.73%.
References
[1] H.C. Aspinall, Chem. Rev. 102 (2002) 1807–1850.
[2] F.T. Edelmann, D.M.M. Freckmann, H. Schumann, Chem. Rev. 102 (2002)
1851–1896.
[3] O. Dechy-Cabaret, B. Martin-Vaca, D. Bourissou, Chem. Rev. 104 (2004)
6147–6176.
[4] J. Gromada, J.-F. Carpentier, A. Mortreux, Coord. Chem. Rev. 248 (2004) 397–410.
[5] W.E. Piers, D.J.H. Emslie, Coord. Chem. Rev. 233–234 (2002) 131–155.
[6] G. Zi, Dalton Trans. (2009) 9101–9109.
[7] G. Zi, L. Xiang, H. Song, Organometallics 27 (2008) 1242–1246.
[8] Q. Wang, L. Xiang, H. Song, G. Zi, J. Organomet. Chem. 694 (2009) 691–696.
[9] G. Zi, L. Xiang, X. Liu, Q. Wang, H. Song, Inorg. Chem. Commun. 13 (2010) 445–448.
[10] Q. Wang, L. Xiang, H. Song, G. Zi, Dalton Trans. (2008) 5930–5944.
[11] G. Zi, X. Liu, L. Xiang, H. Song, Organometallics 28 (2009) 1127–1137.
[12] G. Zi, F. Zhang, L. Xiang, Y. Chen, W. Fang, H. Song, Dalton Trans. 39 (2010)
4048–4061.
[13] Q. Wang, H. Song, G. Zi, J. Organomet. Chem. 695 (2010) 1583–1591.
[14] G. Zi, F. Zhang, H. Song, Chem. Commun. 46 (2010) 6296–6298.
[15] F. Zhang, H. Song, G. Zi, J. Organomet. Chem. 695 (2010) 1993–1999.
[17] L.J.E. Stanlake, J.D. Beard, L.L. Schafer, Inorg. Chem. 47 (2008) 8062–8068.
[18] L.J.E. Stanlake, L.L. Schafer, Organometallics 28 (2009) 3990–3998.
[19] Preparation of 3. Under nitrogen gas, a toluene solution (10 mL) of 1 (0.29 g,
0.5 mmol) was slowly added to a toluene solution (10 mL) of Y[N(SiMe3)2]3
(0.28 g, 0.5 mmol) with stirring at room temperature. The resulting solution was
refluxed overnight to give a light yellow solution. The solution was filtered, and
the filtrate was concentrated to about 2 mL. 3 was isolated as colorless crystals
after this solution stood at room temperature for three days. Yield: 0.39 g (79%).
M.p.: 218–220 °C (dec.). 1H NMR (C6D6): δ 8.06 (d, J=8.8 Hz, 1H, aryl), 7.91 (d,
J=8.8 Hz, 1H, aryl), 7.64 (d, J=8.1 Hz, 1H, aryl), 7.51 (m, 2H, aryl), 7.43 (m, 2H,
aryl), 6.83 (m, 3H, aryl), 6.65 (m, 2H, aryl), 6.55 (s, 2H, aryl), 6.46 (s, 2H, aryl), 6.36
(s, 1H, NH), 2.67 (s, 3H, CH3), 2.14 (s, 6H, CH3), 2.12 (s, 3H, CH3), 1.80 (s, 3H, CH3),
1.76 (s, 3H, CH3), 0.53 (s, 9H, Si(CH3)3), 0.32 (s, 27H, Si(CH3)3). 13C NMR (C6D6): δ
181.5, 172.0, 139.8, 138.2, 137.8, 137.5, 136.5, 136.1, 134.9, 134.3, 134.2, 132.7,
[20] Crystal data for 3: C52H71N4O2Si4Y, fw=985.40, monoclinic, P1211, a=12.708(2)
Å, b=19.822(3) Å, c=17.621(2) Å, β=104.67(1)°, V=4294.0(9) Å3, Z=2,
R1=0.046 for 14786 (IN2σ(I)), wR2=0.127 (all data). Crystal data for 4·C6H12
:
C
50H77N4OSi4Y, fw=951.43, triclinic, P1, a=9.000(1) Å, b=11.502(1) Å,
c=13.067(2) Å, α=101.60(1), β=95.96(1), γ=91.03(1), V=5963.3(3) Å3,
Z=1, R1=0.048 for 5613 (IN2σ(I)), wR2=0.099 (all data).
[21] General procedure for polymerization of rac-lactide. In a glovebox, a Schlenk flask
was charged with a solution of the complex (typically 0.005 mmol) in toluene
(0.2 mL) or THF (0.2 mL). To this solution was added rapidly a toluene or THF
solution (5.0 mL) of rac-lactide (5.0 mmol), and the reaction mixture was
vigorously stirred for 2 h at room temperature. The polymerization was quenched
by the addition of acidified methanol. The resulting precipitated polylactide was
collected, washed with methanol several times, and dried in vacuum at 50 °C
overnight.
[22] R. Heck, E. Schulz, J. Collin, J.-F. Carpentier, J. Mol. Catal. A: Chem. 268 (2007)
163–168.
[23] J.E. Kasperczyk, Macromolecules 28 (1995) 3937–3939.
[24] K.A.M. Thakur, R.T. Kean, E.S. Hall, M.A. Doscotch, J.I. Siepmann, E.J. Munson,
Macromolecules 30 (1997) 2422–2428.
[25] X. Pang, X. Chen, H. Du, X. Wang, X. Jing, J. Organomet. Chem. 692 (2007)
5605–5613.
[26] T.M. Ovitt, G.W. Coates, J. Am. Chem. Soc. 124 (2002) 1316–1326.
[27] Y. Yang, S. Li, D. Cui, X. Chen, X. Jing, Organometallics 26 (2007) 671–678.