Novel Amido-Complexes for the Efficient Asymmetric Hydrogenation of Imines
Angew. Chem. 2009, 121, 5449–5453; Angew. Chem.
Due to the modular ligand design, broad substitution
patterns can be realized. The high efficiency and good
selectivity combined with the novel structural motif
opens up new prospects for the enantioselective hy-
drogenation of imines.
Int. Ed. 2009, 48, 5345–5349; d) M. N. Cheemala, P.
Knochel, Org. Lett. 2007, 9, 3089–3092; e) A. Trifono-
va, J. S. Diesen, P. G. Andersson, Chem. Eur. J. 2006,
12, 2318–2328; f) S. F. Zhu, J. B. Xie, Y. Z. Zhang, S.
Li, Q. L. Zhou, J. Am. Chem. Soc. 2006, 128, 12886–
12891; g) C. Moessner, C. Bolm, Angew. Chem. 2005,
117, 7736–7739; Angew. Chem. Int. Ed. 2005, 44, 7564–
7567; h) A. Trifonova, J. S. Diesen, C. J. Chapman, P. G.
Andersson, Org. Lett. 2004, 6, 3825–3827; i) C. Blanc,
F. Agbossou-Niedercorn, G. Nowogrocki, Tetrahedron:
Asymmetry 2004, 15, 2159–2163; j) P. G. Cozzi, F.
Menges, S. Kaiser, Synlett 2003, 833–836; k) F. Menges,
A. Pfaltz, Adv. Synth. Catal. 2002, 344, 40–44; l) S.
Kainz, A. Brinkmann, W. Leitner, A. Pfaltz, J. Am.
Chem. Soc. 1999, 121, 6421–6429; m) P. Schnider, G.
Koch, R. Pretot, G. Z. Wang, F. M. Bohnen, C. Kruger,
A. Pfaltz, Chem. Eur. J. 1997, 3, 887–892.
Experimental Section
General Procedure for the Asymmetric
Hydrogenation
Stock solutions of the pre-catalysts (3.01 mmol/mL) were
prepared in THF via alcohol elimination reaction of the
ligand (stock solution in THF) and 0.5 equiv. of [MOCH3
ACHTUNGTRENNUNG(cod)]2 (M=Rh, Ir). Stock solutions of the imines
(1.51 mmolmLÀ1) were prepared in THF. The solutions
were prepared and stored in a glove box. A high-pressure
steel autoclave (Parr Instruments; 300 mL, 200 bar, 3508C)
with an aluminum insert for multiple reaction tubes (5 or
20) was taken into a glove box. Then the reaction tube
(placed in a 20- or 5-well insert for the autoclave, equipped
with a magnetic stir bar) was loaded with additive (base if
required), the pre-catalyst-solution (e.g., 200 mL=0.1 mol%)
and 400 mL (0.60 mmol) of the substrate solution. Then the
autoclave was sealed and taken out of the glove box. The
autoclave was attached to a high-pressure hydrogen line and
purged with H2. The autoclave was sealed under the appro-
priate H2 pressure and the mixture was stirred for, for exam-
ple, 24 h at the appropriate pressure at room temperature or
at the appropriate temperature (external heating mantle). In
order to stop the hydrogenation reaction, the pressure was
released and water and dodecane (standard for GC) were
added to the reaction solution. The samples were extracted
with diethyl ether (3 mL) and the organic phase was centri-
fugalized at 12,000 rpm and filtered through 0.2 mm PTFE-
syringe filters. This solution was directly used for determina-
tion of the conversion (GC, Lipodex E or Chirasil-DEX
column). For HPLC (Chiralpak IB column) purposes the
samples were diluted (40ꢄ) with diethyl ether (determina-
tion of ee).
[4] For miscellaneous Ir catalysts, see: a) G. Hou, R. Tao,
Y. Sun, X. Zhang, F. Gosselin, J. Am. Chem. Soc. 2010,
132, 2124–2125; b) W. Li, G. Hou, M. Chang, X.
Zhang, Adv. Synth. Catal. 2009, 351, 3123–3127; c) G.
Hou, F. Gosselin, W. Li, J. C. McWilliams, Y. Sun, M.
Weisel, P. D. OꢅShea, C.-Y. Chen, I. W. Davies, X.
Zhang, J. Am. Chem. Soc. 2009, 131, 9882–9883; d) N.
´
Mrsic, A. J. Minnaard, B. L. Feringa, J. G. de Vries, J.
Am. Chem. Soc. 2009, 131, 8358–8359; e) C. Li, C.
Wang, B. Villa-Marcos, J. Xiao, J. Am. Chem. Soc.
2008, 130, 14450–14451; f) A. Dervisi, C. Carcedo, L.
Ooi, Adv. Synth. Catal. 2006, 348, 175–183; g) T. Ima-
moto, N. Iwadate, K. Yoshida, Org. Lett. 2006, 8, 2289–
2292; h) S. Vargas, M. Rubio, A. Suarez, D. del Rio, E.
Alvarez, A. Pizzano, Organometallics 2006, 25, 961–
973; i) B. Pugin, H. Landert, F. Spindler, H. U. Blaser,
Adv. Synth. Catal. 2002, 344, 974–979; j) D. Xiao, X.
Zhang, Angew. Chem. 2001, 113, 3533–3536; Angew.
Chem. Int. Ed. 2001, 40, 3425–3428; k) R. Sablong,
J. A. Osborn, Tetrahedron: Asymmetry 1996, 7, 3059–
3062.
[5] For titanocene catalysts, see: a) M. Ringwald, R.
Sturmer, H. H. Brintzinger, J. Am. Chem. Soc. 1999,
121, 1524–1527; b) C. A. Willoughby, S. L. Buchwald, J.
Am. Chem. Soc. 1994, 116, 8952–8965; c) C. A. Wil-
loughby, S. L. Buchwald, J. Am. Chem. Soc. 1994, 116,
11703–11714; d) C. A. Willoughby, S. L. Buchwald, J.
Org. Chem. 1993, 58, 7627–7629; e) C. A. Willoughby,
S. L. Buchwald, J. Am. Chem. Soc. 1992, 114, 7562–
7564.
[6] For Ru catalysts, see: a) P. Cheruku, T. L. Church, P. G.
Andersson, Chem. Asian J. 2008, 3, 1390–1394; b) M.
Jackson, I. C. Lennon, Tetrahedron Lett. 2007, 48,
1831–1834; c) C. J. Cobley, J. P. Henschke, Adv. Synth.
Catal. 2003, 345, 195–201; d) C. J. Cobley, E. Foucher,
J.-P. Lecouve, I. C. Lennon, J. A. Ramsden, G. Thomi-
not, Tetrahedron: Asymmetry 2003, 14, 3431–3433;
e) A. B. Charette, A. Giroux, Tetrahedron Lett. 1996,
37, 6669–6672; f) W. Oppolzer, M. Wills, C. Starke-
mann, G. Bernardinelli, Tetrahedron Lett. 1990, 31,
4117–4120.
Acknowledgements
This work was supported by NANOCAT, an international
graduate-program within the Elitenetzwerk Bayern. We thank
Germund Glatz for his support in the X-ray laboratories.
References
[1] M. Breuer, K. Ditrich, T. Habicher, B. Hauer, M. Keß-
eler, R. Stꢀrmer, Th. Zelinski, Angew. Chem. 2004, 116,
806–843; Angew. Chem. Int. Ed. 2004, 43, 788–824.
[2] I. C. Lennon, P. H. Moran, Curr. Opin. Drug Disc. Dev.
2003, 6, 855–875.
[3] For Ir catalysts with P,N ligands, see: a) A. Baeza, A.
Pfaltz, Chem. Eur. J. 2010, 16, 4003–4009; b) W.-J. Lu,
Y.-W. Chen, X.-L. Hou, Adv. Synth. Catal. 2010, 352,
103–107; c) Z. Han, Z. Wang, X. Zhang, K. Ding,
[7] For Rh catalysts, see: a) D. S. Matharu, J. E. D. Martins,
M. Wills, Chem. Asian J. 2008, 3, 1374–1383; b) C.
Moessner, C. Bolm, Angew. Chem. 2005, 117, 7736–
Adv. Synth. Catal. 2010, 352, 3126 – 3130
ꢂ 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
3129