470
M. P. Dwyer et al. / Bioorg. Med. Chem. Lett. 21 (2011) 467–470
References and notes
1. (a) Sancar, A.; Lindsey-Boltz, L. A.; Unsal-Kacmaz, K.; Linn, S. Annu. Rev.
Biochem. 2004, 73, 39; (b) Kastan, M. B.; Bartek, J. Nature 2004, 432, 316.
2. (a) Bucher, N.; Britten, C. D. Br. J. Cancer 2008, 98, 523; (b) Luo, Y.; Leverson, J. D.
Expert Rev. Anticancer Ther. 2005, 5, 333.
3. (a) Powell, S. N.; DeFrank, J. S.; Connell, P.; Eogan, M.; Preffer, F.; Dombkowski,
D.; Tang, W.; Friend, S. Cancer Res. 1995, 55, 1643; (b) Zhou, B.-B. S.; Elledge, S. J.
Nature 2000, 408, 433; (c) Li, Q.; Zhu, G.-D. Curr. Top. Med. Chem. 2002, 2, 939.
4. (a) Matthews, T. P.; Klair, S.; Burns, S.; Boxall, K.; Cherry, M.; Fisher, M.;
Westwood, I. M.; Walton, M. I.; McHardy, T.; Cheung, K.-M. J.; Van Montfort, R.;
Williams, D.; Aherne, G. W.; Garrett, M. D.; Reader, J.; Collins, I. J. Med. Chem.
2009, 52, 4810. and references cited therein; (b) Janetka, J. W.; Ashwell, S.
Expert Opin. Ther. Patents 2009, 19, 165; (c) Janetka, J. W.; Ashwell, S.; Zabludoff,
S.; Lyne, P. Curr. Opin. Drug Discov. Dev. 2007, 10, 473; (d) Arrington, K. L.;
Dudkin, V. Y. ChemMedChem 2007, 2, 1571.
5. Blasina, A.; Hallin, J.; Chen, E.; Arango, M. E.; Kraynov, E.; Register, J.; Gant, S.;
Ninkovic, S.; Chen, P.; Nichols, T.; O’Connor, P.; Anderas, K. Mol. Cancer Ther.
2008, 7, 2394.
6. Zabludoff, S. D.; Deng, C.; Grondine, M. R.; Sheehy, A. M.; Ashwell, S.; Caleb, B.
L.; Green, S.; Haye, H. R.; Horn, C. L.; Janetka, J. W.; Liu, D.; Mouchet, E.; Ready,
S.; Rosenthal, J. L.; Queva, C.; Schwartz, G. K.; Taylor, K. J.; Tse, A. N.; Walker, G.
E.; White, A. M. Mol. Cancer Ther. 2008, 7, 2955.
Figure 3. X-ray of crystal structure of 17r in CHK1.13
7. (a) Tao, Z.-F.; Lin, N.-H. Anti-Cancer Agents Med. Chem. 2006, 6, 377; (b)
Prudhomme, M. Recent Patents Anti-Cancer Drug Discov. 2006, 11, 55.
8. (a) Dwyer, M. P.; Paruch, K.; Alvarez, C.; Doll, R. J.; Keertikar, K.; Duca, J.;
Fischmann, T. O.; Hruza, A.; Madison, V.; Lees, E.; Parry, D.; Seghezzi, W.;
Sgambellone, N.; Shanahan, F.; Wiswell, D.; Guzi, T. J. Bioorg. Med. Chem. Lett.
2007, 17, 6216; (b) Paruch, K.; Dwyer, M. P.; Alvarez, C.; Brown, C.; Chan, T.-Y.;
Doll, R. J.; Keertikar, K.; Knutson, C.; McKittrick, B.; Rivera, J.; Rossman, R.;
Tucker, G.; Fischmann, T.; Hruza, A.; Madison, V.; Nomeir, A. A.; Wang, Y.; Lees,
E.; Parry, D.; Sgambellone, N.; Seghezzi, W.; Schultz, L.; Shanahan, F.; Wiswell,
D.; Xu, X.; Zhou, Q.; James, R. A.; Paradkar, V. M.; Park, H.; Rokosz, L. R.; Stauffer,
T. M.; Guzi, T. J. Bioorg. Med. Chem. Lett. 2007, 17, 6220; (c) Paruch, K.; Dwyer,
M. P.; Alvarez, C.; Brown, C.; Chan, T.-Y.; Doll, R. J.; Keertikar, K.; Knutson, C.;
McKittrick, B.; Rivera, J.; Rossman, R.; Tucker, G.; Fischmann, T.; Hruza, A.;
Madison, V.; Nomeir, A. A.; Wang, Y.; Kirschmeier, P.; Lees, E.; Parry, D.;
Sgambellone, N.; Seghezzi, W.; Schultz, L.; Shanahan, F.; Wiswell, D.; Xu, X.;
Zhou, Q.; James, R. A.; Paradkar, V. M.; Park, H.; Rokosz, L. R.; Stauffer, T. M.;
Guzi, T. J. ACS Med. Chem. Lett. 2010, 1, 204.
9. Walton, M. I.; Eve, P. D.; Hayes, A.; Valenti, M.; De Haven Brandon, A.; Box, G.;
Boxall, K. J.; Aherne, G. W.; Eccles, S. A.; Raynaud, F. I.; Williams, D. H.; Reader, J.
C.; Collins, I.; Garrett, M. M. D. Mol. Cancer Ther. 2010, 9, 89.
10. Full experimental details have appeared elsewhere: Guzi, T. J.; Paruch, K.;
Dwyer, M. P.; Parry, D. A. US 2007/0082900.
11. Protection of the C7 amino group as the di-SEM analog proved to be optimal for
efficient coupling reactions using either the Suzuki or Stille coupling protocols.
12. CHK1 SPA assay. An in vitro assay utilizing recombinant His-CHK1 expressed in
the baculovirus expression system as an enzyme source and biotinylated
peptide based upon CDC25C as substrate. His-CHK1 was diluted to 32 nM in
kinase buffer containing 50 mM Tris pH 8.0, 10 mM MgCl2, and 1 mM DTT.
CDC25C (CDC25 Ser216 C-term biotinylated peptide, Research Genetics)
dant functionality (17f–h) resulted in derivatives with modest
CHK1 activity. All of the C7 substituted amino derivatives in Table
2 demonstrated improved selectivity versus CDK2 (IC50 >30 lM).
While simple aryl derivatives or heteroaryl derivatives demon-
strated good CHK1 activity (17i–j, o–p), the proper placement of
heteroatom functionality in these motifs was important for retain-
ing CHK1 potency as illustrated by 17k–n. Aminoisothiazole 17r
emerged from the SAR work at the C7 position with excellent po-
tency for CHK1 (<10 nM) and very good selectivity over CDK2.
In order to better understand the SAR trends observed in Tables 1
and 2, a single crystal X-ray structure of 17r bound to CHK1 (shown
in Fig. 3) was obtained.13 In the X-ray structure, three key interac-
tions were observed between 17r and the CHK1 protein. First, the
N1 moiety and C7 NH of the pyrazolo[1,5-a]pyrimidine core bind
to the peptide backbone in the hinge area. Secondly, the 1-methyl-
pyrazole moiety at the C3 position interacts with an array of ordered
water molecules in the kinase specificity domain of CHK1. The SAR
observed for the C3 heterocyclic derivatives shown in Table 1 may
be explained in part by the propensity of these motifs to interact
favorably with these water molecules which may mediate interac-
tions with other amino acids. Lastly, the C5 piperidine nitrogen
interacts with the carboxylate of Glu 91 as well as the amide
carbonyl of Glu 134. Interestingly, the SAR observed at the C7 amino
group (Table 2) is difficult to rationalize since this substitution
projects into the solvent-exposed region based upon the X-ray
structure depicted in Figure 3. Additional SAR efforts directed
toward trying to elucidate the structural/electronic requirements
in this region of this class of CHK1 inhibitors will be discussed in
the accompanying manuscript.14
peptide was diluted to 1.93
20 of 32 nM CHK1 enzyme solution and 20
solution were mixed and combined with 10 L of compound diluted in 10%
l
M in kinase buffer. For each kinase reaction,
lL
lL
of 1.926 substrate
lM
l
DMSO, making final reaction concentrations of 6.2 nM CHK1, 385 nM CDC25C
and 1% DMSO after addition of start solution. The reaction was started by
addition of 50
ATP (Amersham, UK), making a final reaction concentration of 1
0.2 Ci of 33P-ATP per reaction. Kinase reactions ran for 2 h at room
temperature and were stopped by the addition of 100 L of stop solution
lL of start solution consisting of 2
l
M ATP and 0.2
lCi of 33P-
lM ATP, with
l
l
consisting of 2 M NaCl, 1% H3PO4, and 5 mg/mL Streptavidin-coated SPA beads
(Amersham, UK). SPA beads were captured using a 96-well GF/B filter plate
(Packard/Perkin Elmer Life Sciences) and
a Filtermate universal harvester
(Packard/Perkin Elmer Life Sciences). Beads were washed twice with 2 M NaCl
and twice with 2 M NaCl with 1% phosphoric acid. Signal was then assayed
using a TopCount 96-well liquid scintillation counter (Packard/Perkin Elmer
Life Sciences). Dose–response curves were generated from duplicate 8 point
serial dilutions of inhibitory compounds. IC50 values were derived by nonlinear
regression analysis.
In summary, systematic optimization of both the C3 and C7
positions of pyrazolo[1,5-a]pyrimidine CHK1 hit 4 led to the
discovery of potent, selective CHK1 inhibitors represented by
17r. Single X-ray crystallography of 17r in CHK1 elucidated several
key interactions with the protein that appear to be critical to the
improvement of CHK1 potency and selectivity versus CDK2 for this
class of compounds. Additional SAR development and further
analysis of this novel class of CHK1 inhibitors is found in the
accompanying paper.14
13. The coordinates of compound 17r bound to CHK1 have been deposited in the
Protein Databank: pdb ID 3OT8.
14. Labroli, M.; Paruch, K.; Dwyer, M. P.; Alvarez, C.; Keertikar, K.; Poker, C.;
Rossman, R.; Fischmann, T. O.; Duca, J. A.; Madison, V.; Parry, D.; Davis, N.;
Seghezzi, W.; Wiswell, D.; Guzi, T. J. Bioorg. Med. Chem. Lett. 2010, 21, 471.