46
M.I.F. Barbosa et al. / Polyhedron 30 (2011) 41–46
In the 31P{1H} NMR spectra of cis-[RuCl2(dppb)(Cl-bipy)] and
Appendix A. Supplementary data
[RuCl(2Ac4mT)(dppb)] there are doublets, at 43.8 and 30.4 ppm
(2JP–P = 31.6 Hz), and 42.6 (P1) and 32.9 (P2) ppm (2JP–P = 33.9 Hz),
respectively. The presence of doublets, clearly exclude the coordi-
nation of HAc4mTꢀ to the metal center through two nitrogen
atoms [28].
The X-ray structures of the cis-[RuCl2(dppb)(Cl-bipy)], tc-
[RuCl2(CO)2(dppb)] and [RuCl(2Ac4mT)(dppb)] complexes are
shown in Fig. 3, and the relevant bond lengths and angles are sum-
marized in Table 2.
CCDC 746.020, 746.021 and 746.022 contains the supplemen-
tary crystallographic data for cis-[RuCl2(dppb)(Cl-bipy)], tc-
[RuCl2(CO)2(dppb)] and [RuCl(2Ac4mT)(dppb)]. These data can be
tre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-
033; or e-mail: deposit@ccdc.cam.ac.uk.
In cis-[RuCl2(dppb)(Cl-bipy)], the Ru–Cl bond length is longer
when the chlorine is trans to the phosphorus atom than trans to
the nitrogen atom (2.4777(12) Å and 2.4156(12) Å, respectively),
since the trans influence of the phosphorus atom is stronger than
that of the nitrogen atom.
In [RuCl(2Ac4mT)(dppb)], the Ru–Cl bond length, 2.4597(13) Å
is closer to the value observed for Ru–Cl trans to the phosphorus
atoms in cis-[RuCl2(dppb)(Cl-bipy)], since it is also trans to a phos-
phorus atom.
References
[1] K. Abdur-Rashid, S.E. Clapham, A.J.N. Harvey, A.J. Lough, R.H. Morris, J. Am.
Chem. Soc. 124 (2002) 15104.
[2] S.E. Clapham, A. Hadzovic, R.H. Morris, Coord. Chem. Rev. 248 (2004) 2201.
[3] H. Doucet, T. Ohkuma, K. Murata, T. Yokozawa, M. Kozawa, E. Katayama, A.F.
England, T. Ikariya, R. Noyori, Angew. Chem., Int. Ed. 37 (1998) 1703.
[4] K. Murata, K. Okano, M. Miyagi, H. Iwane, R. Noyori, T. Ikariya, Org. Lett. 1
(1999) 1119.
[5] R. Noyori, T. Ohkuma, Pure Appl. Chem. 71 (1999) 1493.
[6] R. Noyori, T. Ohkuma, Angew. Chem., Int. Ed. 40 (2001) 40.
[7] R. Noyori, C.A. Sandoval, K. Muniz, T. Ohkuma, Philos. Trans. R. Soc. A 363
(2005) 901.
[8] R. Noyori, H. Takaya, Acc. Chem. Res. 23 (1990) 345.
[9] T. Ohkuma, H. Doucet, T. Pham, K. Mikami, T. Korenaga, M. Terada, R. Noyori, J.
Am. Chem. Soc. 120 (1998) 1086.
[10] L.R. Dinelli, A.A. Batista, K. Wohnrath, M.P. de Araujo, S.L. Queiroz, M.R.
Bonfadini, G. Oliva, O.R. Nascimento, P.W. Cyr, K.S. MacFarlane, B.R. James,
Inorg. Chem. 38 (1999) 5341.
[11] K. Wohnrath, M.P. de Araujo, L.R. Dinelli, A.A. Batista, I.S. Moreira, E.E.
Castellano, J. Ellena, Dalton Trans. (2000) 3383.
[12] M.P. de Araujo, E.M.A. Valle, J. Ellena, E.E. Castellano, E.N. dos Santos, A.A.
Batista, Polyhedron 23 (2004) 3163.
[13] G. Von Poelhsitz, M.P. de Araujo, L.A.A. de Oliveira, S.L. Queiroz, J. Ellena, E.E.
Castellano, A.G. Ferreira, A.A. Batista, Polyhedron 21 (2002) 2221.
[14] A.L.R. Silva, M.O. Santiago, I.C.N. Diogenes, S.O. Pinheiro, E.E. Castellano, J.
Ellena, A.A. Batista, F.B. do Nascimento, I.S. Moreira, Inorg. Chem. Commun. 8
(2005) 1154.
In the complex tc-[RuCl2(CO)2(dppb)], the bond lengths Ru–P
are longer than in the other complexes [2.424(7) Å and
2.449(7) Å], owing to the competitive effect between two good
p-acceptor ligands (phosphorus atom and CO) [29].
In the complex [RuCl(2Ac4mT)(dppb)], the bond lengths
1.697(5) Å and 1.355(6) Å are typical for C–S and N–N single bonds,
respectively [30]. The distance Ru–S, 2.3479(13) Å is also in the
normal range [30]. In this complex, the distance Ru–N(1) is longer
than the distance Ru–N(2) [2.125(4) Å and 2.046(3) Å, respec-
tively], in this case, the N(2) is trans to a phosphorus atom, which
is a good
p
acceptor species, and N(1) is trans to the Sꢀ, a good do-
nor species. It is worth mentioning that the angle P(1)–Ru–N(2) is
173.58(11)°, while the angle N(1)–Ru–S is only 159.49(10)°, far
from 180°.
[15] A.E. Graminha, A.A. Batista, J. Ellena, E.E. Castellano, L.R. Teixeira, I.C. Mendes,
H. Beraldo, J. Mol. Struct. 875 (2008) 219.
[16] S.L. Queiroz, A.A. Batista, G. Oliva, M. Gambardella, R.H.A. Santos, K.S.
MacFarlane, S.J. Rettig, B.R. James, Inorg. Chim. Acta 267 (1998) 209.
[17] M. Bressan, P. Rigo, Inorg. Chem. 14 (1975) 2286.
4. Conclusions
[18] J.C. Barreto, M.T.S. Trevisan, W.E. Hull, G. Erben, E.S. de Brito, B. Pfundstein, G.
Wortele, B. Spiegelhalder, R.W. Owen, J. Agric. Food Chem. 56 (2008) 5599.
[19] L. Lai, L.C. Lin, J.H. Lin, T.H. Tsai, J. Chromatogr. A 987 (2003) 367.
[20] Collect, Enraf-Nonius, Nonius BV, Delft, The Netherlands, 1997–2000.
[21] Z. Otwinowski, W. Minor, Macromol. Crystallogr., Pt. A 276 (1997) 307.
[22] R.H. Blessing, Acta Crystallogr., Sect. A 51 (1995) 33.
[23] G.M. Sheldrick, SHELXS-97. Program for Crystal Structure Resolution, University
of Göttingen, Göttingen, Germany, 1997.
[24] G.M. Sheldrick, SHELXL-97. Program for Crystal Structures Analysis, University of
Göttingen, Göttingen, Germany, 1997.
[25] L.J. Farrugia, J. Appl. Crystallogr. 30 (1997) 565.
[26] R.P. Tenório, A.J.S. Góes, J.G. Lima, A.R. Faria, A.J. Alves, T.M. Aquino, Quim.
Nova 28 (2005) 1030.
[27] M.O. Santiago, C.L. Donicci, I.D. Moreira, R.M. Carlos, S.L. Queiroz, A.A. Batista,
Polyhedron 22 (2003) 3205.
mer-[RuCl3(dppb)(H2O)] has proved to be a extremely versatile
precursor for the synthesis of different kinds of RuII complexes. In
this study, it was used to obtain a ruthenium(II) complex contain-
ing the m-tolyl-2-acetylpyridine-thiosemicarbazone ion as a li-
gand. Also, the mer-[RuCl3(dppb)(H2O)] complex, in the presence
of a reducing agent, was used to prepare new carbonylrutheni-
um(II) complexes. The oxidizing property of this aqua complex al-
lowed us to stabilize the compound trans-[RuCl2(dppb)(mang)],
containing the natural pharmaceutical product, mangiferin. The
mechanism of the reaction between the mangiferin and mer-
[RuCl3(dppb)(H2O)] was elucidated by cyclic voltammetry and
pulse differential voltammetry, as well as by 31P{1H} experiments.
[28] E.M.A. Valle, F.B. do Nascimento, A.G. Ferreira, A.A. Batista, M.C.R. Monteiro,
S.P. Machado, J. Ellena, E.E. Castellano, E.R. de Azevedo, Quim. Nova 31 (2008)
807.
[29] M.P. de Araujo, A.T. de Figueiredo, A.L. Bogado, G. Von Poelhsitz, J. Ellena, E.E.
Castellano, C.L. Donnici, J.V. Comasseto, A.A. Batista, Organometallics 24
(2005) 6159.
[30] C. Rodrigues, A.A. Batista, R.Q. Aucélio, L.R. Teixeira, L.do.C. Visentin,, H.
Beraldo, Polyhedron 27 (2008) 3061.
Acknowledgement
We thank FAPESP, CNPq, CAPES for the financial support and
Johnson Matthey plc for the loan of RuCl3 (to M.P.A).