and co-workers using a CuI/L-proline system.4f We noted,
however, in these cases ligands were essential for the success
of the reactions. Considering the importance of benzofurans
and indoles, it is highly desirable to develop alternative and
novel methods for the synthesis of these structures.
Scheme 1. Cu-Catalyzed Coupling of N-Tosylhydrazone and
Terminal Alkyne
In the past few years, N-tosylhydrazones have been proven
as a new type of coupling partner for Pd-catalyzed cross-
coupling reactions.5 Moreover, palladium-based three-
component coupling of N-tosylhydrazone, aryl bromide,
and terminal alkyne with copper iodide as a cocatalyst has
been reported by our group.6 More recently, we have
developed a method for the synthesis of substituted allenes
via Cu(I)-catalyzed coupling of N-tosylhydrazones with
terminal alkynes.7 In this case, a bisoxazoline ligand was
crucial for efficient allene formation. The mechanism for
the allene formation is proposed as shown in Scheme 1. Cu
carbene intermediate A is formed through dediazotization
of the in situ generated diazo substrate. Subsequently, the
alkynyl group of the Cu carbene A goes through a migratory
insertion into the carbenic carbon to form intermediate B,
which is followed by protonation to afford the allene product.
We haveconceived that ifa suitableintramolecularnucleo-
phile is introduced, the initially formed allene or inter-
mediate B may undergo a cyclization to afford benzofuran
orindole if the nucleophile isa hydroxyor anamino group,
as shown by the transformation from B to D to E.8 Herein
we wish to report a method for the synthesis of benzo-
furans and indoles from N-tosylhydrazones derived
from o-hydroxy- or o-aminobenzaldehydes and terminal
alkynes based on a ligand-free CuBr-catalyzed coupling-
allenylation-cyclization sequence.
Table 1. Optimization of Reaction Conditionsa
Initially, the reaction conditions were optimized starting
from N-tosylhydrazone 1a and phenylacetylene (2a) in 1,
4-dioxane at 100 °C with various copper catalysts, as sum-
marized in Table 1. It was observed that CuBr gave the best
result (Table 1, entries 1-5). Cu(OAc)2 and CuBr2 were
also effective, albeit affording the products with slightly
entry
catalyst
base
solvent
yield%b
1
CuI
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
Cs2CO3
K2CO3
dioxane
dioxane
dioxane
dioxane
dioxane
dioxane
dioxane
dioxane
dioxane
dioxane
dioxane
MeCN
DMF
74
82
63
69
68
58
55
0
2
CuBr
3
CuCl
4
CuOTf
Cu(MeCN)4PF6
Cu(OAc)2
CuBr2
FeCl2
5
(4) (a) Okuro, K.; Furuune, M.; Enna, M.; Miura, M.; Nomura, M.
J. Org. Chem. 1993, 58 (16), 4716. (b) Bates, C. G.; Saejueng, P.;
Murphy, J. M.; Venkataraman, D. Org. Lett. 2002, 4, 4727. (c) Saejueng,
P.; Bates, C. G.; Venkataraman, D. Synthesis 2005, 1706. (d) Li, J. H.; Li,
J. L.; Wang, D. P.; Pi, S. F.; Xie, Y. X.; Zhang, M. B.; Hu, X. C. J. Org.
Chem. 2007, 72, 2053. (e) Li, J.-H.; Li, J.-L.; Wang, D.-P.; Pi, S.-F.; Xie,
Y.-X.; Zhang, M.-B.; Hu, X.-C. J. Org. Chem. 2007, 72, 2053. (f) Liu, F.;
Ma, D. J. Org. Chem. 2007, 72, 4844. (g) Wu, M.; Mao, J.; Guo, J.; Ji, S.
Eur. J. Org. Chem. 2008, 4050. (h) Jaseer, E. A.; Prasad, D. J. C.; Sekar,
G. Tetrahedron 2010, 66, 2077.
6
7
8
9
AgOTf
AuCl3
none
trace
7
10
11
12
13
14
15
16
17
18
19c
0
CuBr
CuBr
90
77
70
10
48
51
11
45
ꢀ
(5) (a) Barluenga, J.; Moriel, P.; Valdes, C.; Aznar, F. Angew. Chem.,
ꢀ
CuBr
DCE
Int. Ed. 2007, 46, 5587. (b) Barluenga, J.; Tomas-Gamasa, M.; Moriel,
CuBr
toluene
MeCN
ꢀ
P.; Aznar, F.; Valdes, C. Chem.-Eur. J. 2008, 14, 4792. (c) Barluenga, J.;
ꢀ
Escribano, M.; Moriel, P.; Aznar, F.; Valdes, C. Chem.-Eur. J. 2009, 15,
CuBr
CuBr
tBuOK
MeCN
3291. (d) Zhao, X.; Jing, J.; Lu, K.; Zhang, Y.; Wang, J. Chem. Commun.
2010, 1724. (e) Xiao, Q.; Ma, J.; Yang, Y.; Zhang, Y.; Wang, J. Org. Lett.
2009, 11, 4732.
CuBr
NaOMe
Cs2CO3
MeCN
CuBr
MeCN
(6) Zhou, L.; Ye, F.; Zhang, Y.; Wang, J. J. Am. Chem. Soc. 2010,
132, 13591.
(7) Xiao, Q.; Xia, Y.; Li, H.; Zhang, Y.; Wang, J. Angew. Chem., Int.
Ed. 2011, 50, online, DOI: 10.1002/anie.201005741.
(8) For examples of ring-closing reaction of allenes, see: (a) Mukai,
C.; Yamashita, H.; Kitagaki, S. Org. Lett. 2001, 3, 3385. (b) Mukai, C.;
Ohta, M.; Yamashita, H.; Kitagaki, S. J. Org. Chem. 2004, 69, 6867.
(c) Ohno, H.; Hamaguchi, H.; Ohata, M.; Kosaka, S.; Tanaka, T. J. Am.
Chem. Soc. 2004, 126, 8744. (d) Yu, X.; Seo, S.-Y.; Marks, T. J. J. Am.
Chem. Soc. 2007, 129, 7244. (e) Kitagaki, S.; Kawamura, T.; Shibata, D.;
Mukai, C. Tetrahedron 2008, 64, 11086. (f) Inuki, S.; Yoshimitsu, Y.;
Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. 2009, 11, 4478.
a All the reactions were carried out in sealed tubes using 0.4 mmol of
tosylhydrazone 1a, 0.5 mmol of phenylacetylene, 10 mol % of catalyst,
and 3 equiv of base in the solvent at 100 °C for 4 h. b Yields were deter-
mined by GC using dodecane as internal standard. c The reaction was
carried out at 80 °C.
diminished yields (entries 6 and 7). Other catalysts such
as FeCl2, AgOTf, and AuCl3 were found to be essentially
Org. Lett., Vol. 13, No. 5, 2011
969