following reactivity order could be inferred: I > Br ꢀ Cl ª F ꢀ
OTf.13
1450; (c) S. V. Ley and A. W. Thomas, Angew. Chem. Int. Ed., 2003,
42, 5400; (d) K. Kunz, U. Scholz and D. Ganzer, Synlett, 2003, 2428;
(e) I. P. Beletskaya and A. V. Cheprakov, Coord. Chem. Rev., 2004,
248, 2337; (f) J.-P. Corbet and G. Mignani, Chem. Rev., 2006, 106,
2651; (g) M. Carril, R. SanMartin and E. Dom´ınguez, Chem. Soc.
Rev., 2008, 37, 639.
In summary, copper-catalysed coupling reaction of halo
pyridines with various nitrogen nucleophiles can be performed
under microwave-assisted solvent- and ligand-free conditions
providing the corresponding coupling products in moderate to
high yields. Further studies to find alternative and “greener”
catalyst systems and to expand the substrate scope are currently
in progress in our laboratories.
5 F. Monnier and M. Taillefer, Angew. Chem. Int. Ed., 2008, 47,
3096.
6 For examples of ligand-free catalyst systems, see: (a) M. Taillefer, N.
Xia and A. Oualli, Angew. Chem. Int. Ed., 2007, 46, 934; (b) A. Correa
and C. Bolm, Adv. Synth. Catal., 2007, 349, 2673; (c) E. Sperotto, J.
G. de Vries, G. P. M. van Klink and G. van Koten, Tetrahedron Lett.,
2007, 48, 7366; (d) T. Kubo, C. Katoh, K. Yamada, K. Okano, H.
Tokuyama and T. Fukuyama, Tetrahedron, 2008, 64, 11230; (e) J. L.
Bolliger and C. M. Frech, Tetrahedron, 2009, 65, 1180; (f) X.-M. Wu
and Y. Wang, J. Chem. Res., 2009, 555; (g) L. Zhu, P. Guo, G. Li,
J. Lan, R. Xie and J. You, J. Org. Chem., 2007, 72, 8535; (h) J. W.
W. Chang, X. Xu and P. W. H. Chan, Tetrahedron Lett., 2007, 48,
245; (i) H. Huang, X. Yan, W. Zhu, H. Liu, H. Jiang and K. Chen,
J. Comb. Chem., 2008, 10, 617.
7 For examples of solvent-free catalyst systems, see: (a) F. Y. Kwong
and S. L. Buchwald, Org. Lett., 2003, 5, 793; (b) S. Narayan, T.
Seelhammer and R. E. Gawley, Tetrahedron Lett., 2004, 45, 757;
(c) W. S. Chow and T. H. Chan, Tetrahedron Lett., 2009, 50, 1286;
(d) general review: P. J. Walsh, H. Li and C. Anaya de Parrodi, Chem.
Rev., 2007, 107, 2503.
8 It should be, however, noted that solvent-free exothermic reactions
can be problematic because a thermal buffer is missing. For a related
study, see: L. Balland, N. Mouhab, J.-M. Cosmao and L. Estel, Chem.
Eng. Proc., 2002, 41, 395.
9 (a) Microwave Methods in Organic Synthesis, ed. M. Larhed and K.
Olofsson, Springer-Verlag, Berlin, 2006; (b) Microwaves in Organic
Synthesis, 2nd edition, ed. A. Loupy, Wiley-VCH, Weinheim, 2006;
(c) C. O. Kappe and A. Stadler, Microwaves in Organic and Medicinal
Chemistry, Wiley-VCH, Weinheim, 2005.
Experimental section
Procedure for N-heteroarylations of nitrogen nucleophiles
(example: synthesis of 3-(1H-pyrazol-1-yl)pyridine (3a)
After cooling of an oven-dried tube to room temperature
under argon, it was charged with 3-iodopyridine (1a, 102.5 mg,
0.5 mmol), pyrazole (2a, 45 mg, 0.65 mmol), Cu2O (7.2 mg,
0.05 mmol) and K3PO4·H2O (231 mg, 1.0 mmol). The tube was
sealed under argon and placed into a CEM Discover microwave
apparatus. Initially, an irradiation power of 50 W was applied.
When the temperature reached 100 ◦C, the instrument automat-
ically adjusted the power to maintain a constant temperature.
After a total heating time of 1 h, the reaction mixture was cooled
to room temperature and diluted with ethyl acetate (10 mL; use
of less solvent can reduce the yield.) The resulting solution was
filtered through a pad of silica gel and concentrated to give
the crude product. Purification by silica gel chromatography
(1 : 1 pentane/ethyl acetate) gave 3-(1H-pyrazol-1-yl)pyridine
(3a, 66 mg, 91%) as a yellowish oil. The identity and purity of
10 (a) L. Shi, M. Wang, C.-A. Fan, F.-M. Zhang and Y.-Q. Tu, Org.
Lett., 2003, 5, 3515; (b) M. Meciarova´, J. Podlesna´ and S. Toma,
Monatsh. Chem., 2004, 135, 419; (c) S.-Y. Chen, H. Huang, X.-J. Liu,
J.-K. Shen, H.-L. Jiang and H. Liu, J. Comb. Chem., 2008, 10, 358;
(d) M. Poirier, S. Goudreau, J. Poulin, J. Savoie and P. L. Beauliu,
Org. Lett., 2010, 12, 2334.
1
the product was confirmed by H and 13C NMR spectroscopic
analysis. See the ESI† for full details.
11 For other copper-catalysed N-heteroarylations of nitrogen nucle-
ophiles with heteroaryl halides, see: (a) D. Cheng, F. Gan, W. Qian
and W. Bao, Green Chem., 2008, 10, 171; (b) F. Li and T. S. A. Hor,
Chem. Eur. J., 2009, 15, 10585; (c) Z. Zhang, J. Mao, D. Zhu, F. Wu,
H. Chen and B. Wan, Tetrahedron, 2006, 62, 4435; (d) D. Zhu, R.
Wang, J. Mao, L. Xu, F. Wu and B. Wan, J. Mol. Catal. A: Chem.,
2006, 256, 256; (e) Z. Xi, F. Liu, Y. Zhou and W. Chen, Tetrahedron,
2008, 64, 4254; (f) P. Vera-Luque, R. Alajar´ın, J. Alvarez-Builla and
J. J. Vaquero, Org. Lett., 2006, 8, 415; (g) M. A. Khan and J. B.
Polya, J. Chem. Soc. (C), 1970, 85; (h) J. Baffoe, M. Y. Hoe and B. B.
Toure´, Org. Lett., 2010, 12, 1532; (i) F. Lang, D. Zewge, I. N. Houpis
and R. P. Volante, Tetrahedron Lett., 2001, 42, 3251; (j) X. Han,
Tetrahedron Lett., 2010, 51, 360; (k) V. S. C. Yeh and P. E. Wiedeman,
Tetrahedron Lett., 2006, 47, 6011; (l) H. Zhang, Q. Cai and D. Ma, J.
Org. Chem., 2005, 70, 5164; (m) J. B. Arterburn, M. Pannala and A.
M. Gonzalez, Tetrahedron Lett., 2001, 42, 1475; (n) J. C. Antilla, A.
Klapars and S. L. Buchwald, J. Am. Chem. Soc., 2002, 124, 11684;
(o) H.-J. Cristau, P. P. Cellier, J.-F. Spindler and M. Taillefer, Eur.
J. Org. Chem., 2004, 695; (p) A. Shafir and S. L. Buchwald, J. Am.
Chem. Soc., 2006, 128, 8742; (q) X. Han, Tetrahedron Lett., 2010, 51,
360.
12 In the MW experiments, the temperature was measured by an
internal thermocouple. The setting power of the MW instrument
was 50 W during the entire reaction time. When the temperature
reached 100 ◦C, the instrument automatically adjusted the power to
maintain this temperature.
13 For recent mechanistic studies on copper-catalysed cross-couplings,
see: (a) E. R. Strieter, B. Bhayana and S. L. Buchwald, J. Am.
Chem. Soc., 2009, 131, 78; (b) G. O. Jones, P. Liu, K. N. Houk
and S. L. Buchwald, J. Am. Chem. Soc., 2010, 132, 6205; (c) P.-
F. Larsson, C. Bolm and P.-O. Norrby, Chem. Eur. J. accepted for
publication.
Acknowledgements
We are grateful to the Fonds der Chemischen Industrie for finan-
cial support. ZJL thanks Bayer CropScience for postdoctoral
funding.
Notes and references
1 (a) T. T. Denton, X. Zhang and J. R. Cashman, J. Med. Chem., 2005,
48, 224; (b) H.-C. Zhang, C. K. Derian, D. F. McComsey, K. B. White,
H. Ye, L. R. Hecker, J. Li, M. F. Addo, D. Croll, A. J. Eckardt, C.
E. Smith, Q. Li, W.-M. Cheung, B. R. Conway, S. Emanuel, K. T.
Demarest, P. Andrade-Gorden, B. P. Damiano and B. E. Maryanoff,
J. Med. Chem., 2005, 48, 1725; (c) J. Roppe, N. D. Smith, D. Huang,
L. Tehrani, B. Wang, J. Anderson, J. Brodkin, J. Chung, X. Jiang, C.
King, B. Munoz, M. A. Varney, P. Prasit and N. D. P. Cosford, J.
Med. Chem., 2004, 47, 4645; (d) Y. Wang, Y. Li and B. Wang, Int. J.
Mol. Sci., 2007, 8, 166; (e) N. P. Buu-Hoi, R. Rips and R. Cavier, J.
Med. Chem., 1960, 2, 335; (f) A. M. Crider, R. Lamey, H. G. Floss
and J. M. Cassady, J. Med. Chem., 1980, 23, 848; (g) L. He, L. Duan,
J. Qiao, R. Wang, P. Wei, L. Wang and Y. Qiu, Adv. Funct. Mater.,
2008, 18, 2123.
2 (a) K. H. Sugiyarto and H. A. Goodwin, Aust. J. Chem., 1988, 41,
1645; (b) J. Elguero, A. Fruchier, A. de la Hoz, F. A. Jalo´n, B. R.
Manzano, A. Otero and F. Go´mez-de la Torre, Chem. Ber., 1996,
129, 589; (c) J. A. A. W. Elemans, E. J. A. Bijsterveld, A. E. Rowan
and R. J. M. Nolte, Eur. J. Org. Chem., 2007, 751.
3 (a) F. Ullmann, Ber. Dtsch. Chem. Ges., 1903, 36, 2382; (b) F.
Ullmann, Ber. Dtsch. Chem. Ges., 1904, 37, 853.
14 Sulfoximines have been found to be effective chiral ligands in several
catalytic asymmetric reactions by our group. For recent examples,
4 For reviews, see: (a) F. Monnier and M. Taillefer, Angew. Chem. Int.
Ed., 2009, 48, 6954; (b) D. Ma and Q. Cai, Acc. Chem. Res., 2008, 41,
44 | Green Chem., 2011, 13, 42–45
This journal is
The Royal Society of Chemistry 2011
©