Y.-M. Chuan, L.-Y. Yin, Y.-M. Zhang, Y.-G. Peng
FULL PAPER
(m, 1 H, CH pyrrolidine), 3.63–3.65 (m, 1 H, CH pyrrolidine),
4.21–4.23 (m, 1 H, CH), 4.75 (br., 1 H, NH), 7.06–7.32 (m, 8 H,
CH phenyl), 7.62 (s, 1 H, CH phenyl), 7.91 (s, 2 H, CH phenyl)
ppm. 13C NMR (75 MHz, CDCl3): δ = 21.0, 36.4, 51.4, 55.5, 60.0,
65.8, 117.5, 118.4, 118.5, 121.1, 123.4, 124.7, 128.3, 129.1, 129.3,
1.75 (m, 4 H, CH2 hexanone), 2.04–2.10 (m, 1 H, CH2 hexanone),
2.38–2.47 (m, 2 H, CH2, hexanone), 2.68 (m, 1 H, CH hexanone),
3.72–3.80 (dt, J = 9.9, 4.5 Hz, 1 H, CH), 4.53–4.66 (dd, J = 12.3,
10 Hz, 1 H, CH2), 4.91–4.97 (dd, J = 12.4, 4.5 Hz, 1 H, CH2), 7.15–
7.17 (d, J = 6.9 Hz, 2 H, CH phenyl), 7.23–7.34 (m, 3 H, CH
129.9, 131.9, 132.3, 132.8, 132.9, 133.4, 133.5, 138.7, 140.1, phenyl) ppm. 13C NMR (75 MHz, CDCl3): δ = 25.0, 28.5, 33.1,
179.8 ppm.
42.7, 43.9, 52.5, 78.8, 127.7, 128.1, 128.9, 137.7, 211.9 ppm. HPLC
(Chiralpak AS-H, 254 nm, 0.5 mL/min, hexane/iPrOH = 80:20): tR
= 22.8 (major), 17.2 (minor) min; 98%ee.
N-{(3R,5S)-5-[Bis(p-tolylthio)methyl]pyrrolidin-3-yl}-1,1,1-trifluoro-
methanesulfonamide (4b): (CF3SO2)2O (0.25 mL, 1.48 mmol) was
added dropwise to the mixture of compound
8 (0.519 g,
Supporting Information (see footnote on the first page of this arti-
1.17 mmol), NEt3 (0.25 mL, 1.8 mmol), and DMAP (0.05 g,
0.4 mmol) in freshly distilled DCM (20 mL) at –76 °C. After ad-
dition, the mixture was stirred for 30 min and then poured into
saturated aqueous sodium hydrogen carbonate. The phases were
separated, and the aqueous phase was extracted with CH2Cl2. The
combined organic phase was washed with 1 n HCl and brine, dried
(Na2SO4), and concentrated in vacuo. The residue was purified by
silica gel column chromatography to give compound 10 (0.565 g,
84% yield). Trifluoroacetic acid (1.1 mL, 15 equiv.) was added to
the solution of product 10 (0.565 g) in dichloromethane at 0 °C,
and the mixture was stirred at room temperature overnight. After
workup, the residue was purified by silica gel column chromatog-
raphy to afford catalyst 4b (0.427 g, 94% yield) as a yellowish foam.
1H NMR (300 MHz, CDCl3): δ = 1.82–2.30 (m, 2 H, CH2 pyrrol-
idine), 2.32–2.33 (s, 6 H, CH3), 2.85–2.89 (d, J = 12 Hz, 1 H, CH
pyrrolidine), 3.20–3.25 (m, 1 H, CH pyrrolidine), 3.38–3.45 (m, 1
H, CH), 4.19–4.24 (m, 2 H, CH2 pyrrolidine), 5.75 (br., 1 H, NH),
7.09–7.14 (m, 4 H, CH phenyl), 7.25–7.34 (m, 4 H, CH phenyl)
ppm. 13C NMR (75 MHz, CDCl3): δ = 21.1, 37.5, 52.6, 55.2, 59.3,
65.3, 117.7, 122.0, 129.2, 129.3, 130.0, 130.0, 133.3, 133.5, 138.7,
138.7 ppm.
cle): Full experimental procedures and catalyst synthesis.
Acknowledgments
This work supported by the Natural Science Foundation of China
(NSFC-20872120), the Program for New Century Excellent Talents
in University (NCET-06–0772), the Municipal Science Foundation
of Chongqing City (CSTC-2009BB5110), and the Fundamental
Research Funds for the Central Universities.
[1] P. Perlmutter, “Conjugate Addition Reactions” in Organic Syn-
thesis, Pergamon, Oxford, 1992.
[2] a) P. I. Dalko, L. Moisan, Angew. Chem. Int. Ed. 2004, 43,
5138–5175; b) J. Seayad, B. List, Org. Biomol. Chem. 2005, 3,
719–724; c) A. Berkessel, H. Groger, Asymmetric Organocata-
lysis: From Biomimetic Concepts to Applications in Asymmetric
Synthesis, Wiley-VCH, Weinheim, Germany, 2005; d) S. B. Tso-
goeva, Eur. J. Org. Chem. 2007, 11, 1701–1716; e) S. J. Connon,
Chem. Commun. 2008, 2499–2510; f) J. L. Vicario, D. Badía, L.
Carrillo, Synthesis 2007, 14, 2065–2092; g) D. Almasi, D. A.
Alonso, C. Nájera, Tetrahedron: Asymmetry 2007, 18, 299–365;
h) H. Pellissier, Tetrahedron 2007, 63, 9267–9331.
¸
[3] a) B. List, P. Pojarliev, H. J. Martin, Org. Lett. 2001, 3, 2423–
2425; b) S. B. Tsogoeva, S.-W. Wei, Chem. Commun. 2006,
1451–1453; c) H.-B. Huang, E. N. Jacobsen, J. Am. Chem. Soc.
2006, 128, 7170–7171; d) M. P. Lalonde, Y.-G. Chen, E. N. Ja-
cobsen, Angew. Chem. Int. Ed. 2006, 45, 6366–6370; e) Y.-M.
Xu, A. Córdova, Chem. Commun. 2006, 460–462; f) Y.-M. Xu,
W.-B. Zou, H. Sundén, I. Ibrahem, A. Córdova, Adv. Synth.
Catal. 2006, 348, 418–424; g) S. H. McCooey, S. J. Connon,
Org. Lett. 2007, 9, 599–602; h) K. Liu, H.-F. Cui, J. Nie, K.-Y.
Dong, X.-J. Li, J.-A. Ma, Org. Lett. 2007, 9, 923–925; i) M.
Wiesner, J. D. Revell, H. Wennemers, Angew. Chem. Int. Ed.
2008, 47, 1871–1874; j) Z.-G. Yang, J. Liu, X.-H. Liu, Z. Wang,
X.-M. Feng, Z.-S. Su, C.-W. Hu, Adv. Synth. Catal. 2008, 350,
2001–2006; k) Y. Xiong, Y.-H. Wen, F. Wang, B. Gao, X.-H.
Liu, X. Huang, X.-M. Feng, Adv. Synth. Catal. 2007, 349,
2156–2166; l) L. Peng, X.-Y. Xu, L.-L. Wang, J. Huang, J.-F.
Bai, Q.-C. Huang, L.-X. Wang, Eur. J. Org. Chem. 2010, 1849–
1853; m) T.-X. He, Q. Gu, X.-Y. Wu, Tetrahedron 2010, 66,
3195–3198; n) B.-L. Li, Y.-F. Wang, S.-P. Luo, A.-G. Zhong,
Z.-B. Li, X.-H. Du, D.-Q. Xu, Eur. J. Org. Chem. 2010, 656–
662; o) M. Laars, K. Ausmees, M. Uudsemaa, T. Tamm, T.
Kanger, M. Lopp, J. Org. Chem. 2009, 74, 3772–3775; p) X.-
J. Zhang, S.-P. Liu, X.-M. Li, M. Yan, A. S. C. Chan, Chem.
Commun. 2009, 833–835; q) J. Liu, Z.-G. Yang, X.-H. Liu, Z.
Wang, Y.-L. Liu, S. Bai, L.-L. Lin, X.-M. Feng, Org. Biomol.
Chem. 2009, 7, 4120–4127.
Representative Procedure for the Michael Addition of Ketones to Ni-
troolefins: Catalyst 4a (4.6 mg, 0.0075 mmol), benzoic acid (1.5 mg,
0.0125 mmol), and cyclohexanone (0.13 mL, 1.25 mmol) were
mixed at room temperature (25 °C). After stirring for 10 min, ni-
troolefin 6a (37.3 mg, 0.25 mmol) was added. The resulting mixture
was gently stirred at room temperature for the given time and then
directly diluted with ethyl acetate (20 mL) and washed with satu-
rated NaHCO3 and NaCl solutions. The organic layer was dried
(Na2SO4) and concentrated under reduced pressure. The residue
was purified by flash chromatography on silica gel (ethyl acetate/
petroleum ether) to afford Michael adduct product 7a (58 mg, 95%
yield) as a white solid. The relative configurations of the products
(syn or anti) were determined by comparison of the 1H NMR spec-
troscopic data with those reported in the literature. The absolute
configurations of each product were determined either by compari-
son of optical rotation values with those reported in the literature
or by comparison of HPLC retention times. Spectral data for com-
pounds are in agreement with literature reports.
[4] For selected examples of using bulky groups to control stereo-
chemistry, see: a) S.-L. Zhu, S.-Y. Yu, D.-W. Ma, Angew. Chem.
Int. Ed. 2008, 47, 545–548; b) J.-B. Wu, B.-K. Ni, A. D. Head-
ley, Org. Lett. 2009, 11, 3354–3356; c) E. Alza, X. C. Cambeiro,
C. Jimeno, M. A. Pericàs, Org. Lett. 2007, 9, 3717–3720; d) S.-
E. Syu, T.-T. Kao, W.-W. Lin, Tetrahedron 2010, 66, 891–897;
e) Y.-G. Chi, L. Guo, N. A. Kopf, S. H. Gellman, J. Am. Chem.
Soc. 2008, 130, 5608–5609; f) Y. Hayashi, H. Gotoh, T. Haya-
shi, M. Shoji, Angew. Chem. Int. Ed. 2005, 44, 4212–4215; g)
(S)-2-[(R)-2-Nitro-1-phenylethyl]cyclohexanone (7a): 1H NMR
(300 MHz, CDCl3): δ = 1.21–1.58 (m, 1 H, CH2 hexanone), 1.62–
582
www.eurjoc.org
© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2011, 578–583