10.1002/anie.201707099
Angewandte Chemie International Edition
COMMUNICATION
Acknowledgments
min. Further stirring for 20 min gave bis-cycloadducts 15 as a mixture
of two diastereomers (1:1, Rf 0.67, 0.60, hexane/EtOAc = 1/1) in 44%
combined yield.
This work was supported by Grant-in-Aid from Japan Society
for the Promotion of Science (JSPS) (Grant Nos. JP23000006,
JP16H06351, JP26105715, and JP26750363). We are grateful
to Ms. Sachiyo Kubo for X-ray analyses.
[16] M. A. Meador, H. Hart, J. Org. Chem. 1989, 54, 2336–2341.
[17] CCDC 1543805 (16) contains the supplementary crystallographic data
for this paper. These data can be obtained free of charge from The
Keywords: antibiotics • total synthesis • benzyne • nitrile oxide
• isoxazole
Cambridge
[18] Nitrile oxide 18 could be stored at –18 °C for at least one month.
Crystallographic
Data
Centre
via
[19] T.-C. Kao, G. J. Chuang, C.-C. Liao, Angew. Chem. Int. Ed. 2008, 47,
7325–7327, and the references cited therein.
[1]
1) W. Weber, H. Zähner, J. Siebers, K. Schröder, A. Zeeck, Arch.
Microbiol. 1979, 121, 111–116; b) M. G. Anderson, C. L.-Y. Khoo, R.
W. Rickards, J. Antibiot. 1989, 42, 640–643; c) J. Rohr, A. Zeeck, J.
Antibiot. 1990, 43, 1169–1178.
[20] C. J. Easton, G. A. Heath, C. M. M. Hughes, C. K. Y. Lee, G. P.
Savage, G. W. Simpson, E. R. T. Tiekink, G. J. Vuckovic, R. D.
Webster, J. Chem. Soc., Perkin Trans. 1 2001, 1168–1174, and the
references cited therein.
[2]
a) E. Egert, M. Noltemeyer, J. Siebers, J. Rohr, A. Zeeck, J. Antibiot.,
1992, 45, 1190–1192; b) P. G. Jones, G. M. Sheldrick, Acta Cryst.
1985, C41, 255–257; c) H. Drautz, P. Reuschenbach, H. Zähner, J.
Rohr, A. Zeeck, J. Antibiot. 1985, 38, 1291–1301.
[21] M. S. Kerr, J. R. de Alaniz, T. Rovis, J. Org. Chem. 2005, 70, 5725.
[22] For retro-benzoin reactions, see: a) J. P. Kuebrich, R. L. Schowen, M.-
S. Wang, M. E. Lupes, J. Am. Chem. Soc. 1971, 93, 1214–1220; b) F.
Diederich, H.-D. Lutter, J. Am. Chem. Soc. 1989, 111, 8438–8446; c)
Y. Suzuki, Y. Takemura, K. Iwamoto, T. Higashino, A. Miyashita, Chem.
Pharm. Bull. 1998, 46, 199–206.
[3]
[4]
a) For a review, see: C. R. Hutchinson, Chem. Rev. 1997, 97, 2525–
2535; b) H. Motamedi, C. R. Hutchinson, Proc. Natl. Acad. Sci. USA
1987, 84, 4445–4449; c) E. R. Rafanan, Jr., C. R. Hutchinson, B.
Shen, Org. Lett. 2000, 2, 3225–3227; d) J. Rohr, S. Eick, A. Zeeck, J.
Antibiot. 1988, 41, 1066–1073;
[23] M.-E. Trân-Huu-Dâu, R. Wartchow, E. Winterfeldt, Y.-S. Wong, Chem.
Eur. J. 2001, 7, 2349–2369.
a) D. W. Cameron, P. J. de Bruyn, Tetrahedron Lett. 1992, 33, 5593–
5596; b) D. W. Cameron, P. G. Griffiths A. G. Riches, Aust. J. Chem.,
1999, 52, 1173–1177; c) P. Martin, S. Rodier, M. Mondon, B. Renoux,
B. Pfeiffer, P. Renard, A. Pierré, J.-P. Gesson, Bioorg. Med. Chem.
2002, 10, 253–260; d) D. V. Kozhinov, V. Behar, J. Org. Chem. 2004,
69, 1378–1379.
[24] For the synthesis of 24d, see Supporting Information.
[25] a) C.-S. Chu, T.-H. Lee, C.-C. Liao, Synlett 1994, 635; For a review,
see: b) D. Magdziak, S. J. Meek, T. R. R. Pettus, Chem. Rev. 2004,
1383–1429.
[26] For selected examples of an ortho-xylylene acetal, see: a) R. Grewe,
A. Struve, Chem. Ber. 1963, 96, 2819–2821; b) K. Mori, T. Yoshimura,
T. Sugai, Liebigs Ann. Chem. 1988, 899–902.
[5]
a) Y. Koyama, R. Yamaguchi, K. Suzuki, Angew. Chem. Int. Ed. 2008,
47, 1084–1087; b) A. Takada, Y. Hashimoto, H. Takikawa, K. Hikita, K.
Suzuki, Angew. Chem. Int. Ed. 2011, 50, 2297–2301; c) Y. Yamashita,
Y. Hirano, A. Takada, H. Takikawa, K. Suzuki, Angew. Chem. Int. Ed.
2013, 52, 6658–6661; d) H. Takikawa, Y. Ishikawa, Y. Yoshinaga, Y.
Hashimoto, T. Kusumi, K. Suzuki, Bull. Chem. Soc. Jpn. 2016, 89,
941–954.
[27] By analogy to a 2-naphthylmethyl group, we expected the oxidative
hydrolysis of DMN acetal. See M. Inoue, H. Uehara, M. Maruyama, M.
Hirama, Org. Lett. 2002, 4, 4551–4554, and references cited therein.
[28] ortho-Quinone mono-acetal 24d was slightly light-sensitive, but could
be stored in the dark without degradation.
[6]
[7]
H. Takikawa, A. Takada, K. Hikita, K. Suzuki, Angew. Chem. Int. Ed.
2008, 47, 7446–7449.
[29] D. A. DiRocco, K. M. Oberg, D. M. Dalton, T. Rovis, J. Am. Chem. Soc.
2009, 131, 10872–10874.
a) Y. Hachisu, J. W. Bode, K. Suzuki, J. Am. Chem. Soc. 2003, 125,
8432–8433; b) H. Takikawa, Y. Hachisu, J. W. Bode, K. Suzuki,
Angew. Chem. Int. Ed. 2006, 45, 3492–3494; c) H. Takikawa, K.
Suzuki, Org. Lett. 2007, 9, 2713–2716.
[30] The (R)-stereochemistry of α-ketol 26 was assigned by the completion
of total synthesis. The absolute stereochemistry of 1 was established
(ref. 2c). The (R)-stereochemistry of 26 is in accord with the general
trend recorded previously for the enantioselective benzoin cyclizations
of related isoxazole-bearing ketoaldehydes (ref. 7b).
[8]
[9]
H. Takikawa, Y. Hashimoto, K. Suzuki, Chem. Lett. 2014, 43, 1607–
1609.
[31] The enantiomeric purity of α-ketol (R)-26 was assessed by HPLC
H. Takikawa, S. Sato, R. Seki, K. Suzuki, Chem. Lett. 2017, 46, 998–
1000.
analysis using
a chiral stationary phase, which allowed good
separation of the racemic sample of 26; see Supporting Information.
[32] Prior protection of C4a-OH was essential: reaction of the isoxazolium
salt 28 with the C4a-OH unprotected failed, giving no hydroxylated
product under the same conditions.
[10] a) T. Hamura, T. Arisawa, T. Matsumoto, K. Suzuki, Angew. Chem. Int.
Ed. 2006, 45, 6842–6844; b) T. Arisawa, T. Hamura, H. Uekusa, T.
Matsumoto, K. Suzuki, Synlett 2008, 8, 1179–1184.
[11] a) T. Hosoya, T. Hasegawa, Y. Kuriyama, T. Matsumoto, K. Suzuki,
Synlett 1995, 177–179; b) T. Hosoya, T. Hamura, Y. Kuriyama, K.
Suzuki, Synlett 2000, 520–522; c) T. Hamura, T. Hosoya, H.
Yamaguchi, Y. Kuriyama, M. Tanabe, M. Miyamoto, Y. Yasui, T.
Matsumoto, K. Suzuki, Helv. Chim. Acta 2002, 85, 3589–3604.
[33] For selected use of [D7]benzyl groups in organic synthesis, see: a) A.
L. J. Byerley, A. M. Kenwright, C. W. Lehmann, J. A. H. MacBride, P.
G. Steel, J. Org. Chem. 1998, 63, 193–194; b) A. Ishiwata, Y. Ito,
Tetrahedron Lett. 2005, 46, 3521–3524; c) K. Ohmori, T. Shono, Y.
Hatakoshi, T. Yano, K. Suzuki. Angew. Chem. Int. Ed. 2011, 50, 4862–
4867.
[12] Facile preparation of trisubstituted furans, including 12, and their
regioselective [4+2] cycloaddition with α-alkoxybenzyne have been
recently reported. See S. Sato, T. Kawada, H. Takikawa, K. Suzuki,
Synlett 2017, DOI: 10.1055/s-0036-1590825.
[34] a) P. L. Anelli, C. Biffi, F. Montanari, S. Quici, J. Org. Chem. 1987, 52,
2559–2562; b) S. Banfi, F. Montanari, S. Quici, J. Org. Chem. 1989,
54, 1850–1859.
[13] A related bis-sulfonate, in which one of the sulfonate is a triflate (ref.
10a), was less satisfactory. We were pleased to find that bis-tosylate
13, easier to prepare, worked nicely by choosing a suitable set of
conditions. Particularly, careful control of the temperature was crucial.
[14] For previous model studies, see ref. 12.
[35] a) Y. Oikawa, K. Horita, O. Yonemitsu, Tetrahedron Lett. 1985, 26,
1541–1544; b) Y. Oikawa, T. Tanaka, O. Yonemitsu, Tetrahedron Lett.
1986, 27, 3647–3650.
[36] a) J. H. Penn, Z. Lin, J. Org. Chem. 1990, 55, 1554–1559; b) M.
Miyashita, M. Sasaki, I. Hattori, M. Sakai, K. Tanino, Science 2004,
305, 495–499.
[15] Experimental procedure: Bis-tosylate 13 was treated with n-BuLi (1.1
equiv) in the presence of KSA 11 (1.1 equiv) (THF, –95 → –20 °C, 2
h). TLC-control showed that the starting material was consumed, and
mono-cycloadduct 14 (Rf 0.73, hexane/EtOAc = 1/1) was formed.
Furan 12 (1.5 equiv) was added to the reaction mixture, which was
chilled to –78 °C, and n-BuLi (1.25 equiv) was slowly added over 5
[37] The Dess–Martin oxidation of the C4-epimer of 31 (CH2Cl2, RT, 2 h)
gave ketone 30a in 81% yield gave ketone 30a in 81% yield.
[38] B. Liu, Y. Tan, M. Gan, H. Zhou, Y. Wang, Y. Ping, B. Li, Z. Yang, C.
Xiao, Acta Pharm. Sin. 2014, 14, 230–236.
This article is protected by copyright. All rights reserved.