Organic Letters
Letter
species could be oxidized by AgOAc to regenerate the RhIII active
catalyst.
Catal. 2016, 6, 3909. (i) Thrimurtulu, N.; Dey, A.; Maiti, D.; Volla, C. M.
R. Angew. Chem., Int. Ed. 2016, 55, 12361.
(6) For other catalytic C−H functionalizations with allenes as the
coupling partner, see: (a) Zhang, Y. J.; Skucas, E.; Krische, M. J. Org. Lett.
2009, 11, 4248. (b) Tran, D. N.; Cramer, N. Angew. Chem., Int. Ed. 2010,
49, 8181. (c) Kuninobu, Y.; Yu, P.; Takai, K. Org. Lett. 2010, 12, 4274.
(d) Zeng, R.; Fu, C.; Ma, S. J. Am. Chem. Soc. 2012, 134, 9597. (e) Zeng,
R.; Wu, S.; Fu, C.; Ma, S. J. Am. Chem. Soc. 2013, 135, 18284. (f) Ye, B.;
Cramer, N. J. Am. Chem. Soc. 2013, 135, 636. (g) Wang, H.; Beiring, B.;
Yu, D.-G.; Collins, K. D.; Glorius, F. Angew. Chem., Int. Ed. 2013, 52,
12430. (h) Gong, T.-J.; Su, W.; Liu, Z.-J.; Cheng, W.-M.; Xiao, B.; Fu, Y.
Org. Lett. 2014, 16, 330. (i) Nakanowatari, S.; Ackermann, L. Chem. -
Eur. J. 2015, 21, 16246.
In summary, by using α-allenols as the coupling partners, we
have developed an efficient RhIII-catalyzed C−H functionaliza-
tion of aromatic and vinylic amides for the synthesis of
isoindolinone and 1,5-dihydro-pyrrol-2-one skeletons. The
hydroxyl group in the allene substrate is essential in controlling
the chemo- and regioselectivity of the reaction probably by
coordination interaction with the rhodium catalyst. Further
investigations on the synthetic application of this transformation
are in progress.
(7) (a) Satoh, T.; Miura, M. Chem. - Eur. J. 2010, 16, 11212.
(b) Patureau, F. W.; Wencel-Delord, J.; Glorius, F. Aldrichimica Acta
2012, 45, 31. (c) Mesganaw, T.; Ellman, J. A. Org. Process Res. Dev. 2014,
18, 1097. (d) Zhou, L.; Lu, W. Chem. - Eur. J. 2014, 20, 634. (e) Muzart,
J.; Le Bras, J. Synthesis 2014, 46, 1555. (f) Gandeeoan, P.; Cheng, C.-H.
Chem. - Asian J. 2015, 10, 824.
(8) (a) Bjoere, A.; Bostroem, J.; Davidsson, O.; Emtenaes, H.; Gran,
U.; Iliefski, T.; Kajanus, J.; Olsson, R.; Sandberg, L.; Strandlund, G.; et al.
PCT Int. Appl. WO 2008008022, 2008. (b) Baldwin, J. J.; Cacatian, S.;
Claremon, D. A.; Dillard, L. W.; Flaherty, P. T.; Ishchenko, A. V.; Jia, L.;
McGeehan, G.; Simpson, R. D.; Singh, S. B.; et al.PCT Int. Appl. WO
2008156816, 2008.
(9) (a) Floch, L.; Nydegger, F.; Gossauer, A. Helv. Chim. Acta 1994, 77,
445. (b) Ito, M.; Okui, H.; Nakagawa, H.; Mio, S.; Iwasaki, T.; Iwabuchi,
J. Heterocycles 2002, 57, 881. (c) Chatzimpaloglou, A.; Yavropoulou, M.
P.; Rooij, K. E.; Biedermann, R.; Mueller, U.; Kaskel, S.; Sarli, V. J. Org.
Chem. 2012, 77, 9659. (d) Shionozaki, N.; Yamaguchi, T.; Kitano, H.;
Tomizawa, M.; Makino, K.; Uchiro, H. Tetrahedron Lett. 2012, 53, 5167.
(e) Nicolaou, K. C.; Shi, L.; Lu, M.; Pattanayak, M. R.; Shah, A. A.;
Ioannidou, H. A.; Lamani, M. Angew. Chem., Int. Ed. 2014, 53, 10970.
(f) Chatzimpaloglou, A.; Kolosov, M.; Eckols, T. K.; Tweardy, D. J.;
Sarli, V. J. Org. Chem. 2014, 79, 4043.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures and compound characterization
AUTHOR INFORMATION
Corresponding Authors
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the National Basic Research Program of China
(2015CB856600), the National Natural Science Foundation of
China (21202184, 21232006, 21572255), and the Chinese
Academy of Sciences for financial support.
(10) For detailed optimization studies, see Table S1 in the Supporting
(11) The following benzamides bearing different substituents on the
amide group were also tested, but no reaction was observed: PhCONHR
(R = Me, Ph, Bn, Ts).
(12) An elevated temperature was necessary for N-methoxy-
acrylamides since most of the starting materials were recovered at
room temperature. In contrast, the reaction of N-methoxybenzamides
can proceed smoothly at room temperature and increasing the reaction
temperature could not improve the yield. These results indicate N-
methoxyacrylamides have lower reactivity compared with N-methoxy-
benzamides in this [4 + 1] annulation.
REFERENCES
■
(1) (a) Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles; Wiley-
VCH: Weinheim, 2003. (b) Patil, N. T.; Yamamoto, Y. Chem. Rev. 2008,
108, 3395.
(2) (a) Morden Allene Chemistry; Krause, N., Hashmi, A. S. K., Eds.;
Wiley-VCH: Weinheim, 2004. (b) Ma, S. Chem. Rev. 2005, 105, 2829.
(c) Ma, S. Pure Appl. Chem. 2006, 78, 197. (c1) Krause, N.; Winter, C.
Chem. Rev. 2011, 111, 1994.
(3) (a) Zeni, G.; Larock, R. C. Chem. Rev. 2006, 106, 4644. (b) Lechel,
T.; Reissig, H.-U. Pure Appl. Chem. 2010, 82, 1835. (c) Alcaide, B.;
Almendros, P. Chem. Record 2011, 11, 311. (d) Pinho e Melo, T. M. V.
D. Monatsh. Chem. 2011, 142, 681.
(4) For some recent reviews on transition metal catalyzed C−H
functionalization, see: (a) Rouquet, G.; Chatani, N. Angew. Chem., Int.
Ed. 2013, 52, 11726. (b) Li, B.; Dixneuf, P. H. Chem. Soc. Rev. 2013, 42,
5744. (c) Wencel-Delord, J.; Glorius, F. Nat. Chem. 2013, 5, 369.
(d) Ackermann, L. Acc. Chem. Res. 2014, 47, 281. (e) Zhang, X.-S.;
(13) (a) Xu, Y.-H.; Lu, J.; Loh, T.-P. J. Am. Chem. Soc. 2009, 131, 1372.
(b) Wen, Z.-K.; Xu, Y.-H.; Loh, T.-P. Chem. - Eur. J. 2012, 18, 13284.
(c) Hu, X.-H.; Zhang, J.; Yang, X.-F.; Xu, Y.-H.; Loh, T.-P. J. Am. Chem.
Soc. 2015, 137, 3169.
(14) The possible regioisomeric product 3′ was not observed.
Chen, K.; Shi, Z.-J. Chem. Sci. 2014, 5, 2146. (f) Ros, A.; Fernan
́
dez, R.;
Lassaletta, J. M. Chem. Soc. Rev. 2014, 43, 3229. (g) Shi, G.; Zhang, Y.
Adv. Synth. Catal. 2014, 356, 1419. (h) Kuhl, N.; Schroder, N.; Glorius,
F. Adv. Synth. Catal. 2014, 356, 1443. (i) Guo, X.-X.; Gu, D.-W.; Wu, Z.;
Zhang, W. Chem. Rev. 2015, 115, 1622.
(5) For C−H functionalization with allenes for the synthesis of
heterocyles, see: (a) Wang, H.; Glorius, F. Angew. Chem., Int. Ed. 2012,
51, 7318. (b) Suresh, R. R.; Swamy, K. C. K. J. Org. Chem. 2012, 77,
6959. (c) Zeng, R.; Ye, J.; Fu, C.; Ma, S. Adv. Synth. Catal. 2013, 355,
1963. (d) Xia, X.-F.; Wang, Y.-Q.; Zhang, L.-L.; Song, X.-R.; Liu, X.-Y.;
Liang, Y.-M. Chem. - Eur. J. 2014, 20, 5087. (e) Wu, S.; Zeng, R.; Fu, C.;
Yu, Y.; Zhang, X.; Ma, S. Chem. Sci. 2015, 6, 2275. (f) Casanova, N.;
̈
(15) (a) Zhao, J.-F.; Duan, X.-H.; Yang, H.; Guo, L.-N. J. Org. Chem.
2015, 80, 11149. (b) Zhang, Z.-Q.; Liu, F. Org. Biomol. Chem. 2015, 13,
6690. (c) Su, B.; Wei, J.-B.; Wu, W.-L.; Shi, Z.-J. ChemCatChem 2015, 7,
2986.
(16) Shimp, H. L.; Hare, A.; McLaughlin, M.; Micalizio, G. C.
Tetrahedron 2008, 64, 3437.
(17) (a) Ding, D.; Mou, T.; Feng, M.; Jiang, X. J. Am. Chem. Soc. 2016,
138, 5218. (b) Ma, W.; Ackermann, L. ACS Catal. 2015, 5, 2822.
Seoane, A.; Mascarenas, J. L.; Gulías, M. Angew. Chem., Int. Ed. 2015, 54,
̃
2374. (g) Gandeepan, P.; Rajamalli, P.; Cheng, C.-H. Chem. - Eur. J.
2015, 21, 9198. (h) Kuppusamy, R.; Muralirajan, K.; Cheng, C.-H. ACS
D
Org. Lett. XXXX, XXX, XXX−XXX