state would be higher in comparison with G2 and M2 bearing
shorter spacers C6.
Notes and references
€
1 J. W. Goodby, I. M. Saez, S. J. Cowling, V. Gortz, M. Draper,
A. W. Hall, S. Sia, G. Cosquer and E. P. Raynes, Angew. Chem.,
Int. Ed., 2008, 47, 2754–2787; I. M. Saez and J. W. Goodby, Struct.
Bonding, 2008, 128, 1–62; B. Donnio, S. w. Buathong, I. Bury and
D. Guillon, Chem. Soc. Rev., 2007, 36, 1495–1513; C. T. Imrie and
P. A. Henderson, Chem. Soc. Rev., 2007, 36, 2096–2124.
2 Handbook of Liquid Crystals. Vol. 3: High Molecular Weight Liquid
Crystals, ed. D. Demus, J. W. Goodby, G. W. Gray, H.-W. Spiess
and V. Vill, Wiley-VCH, Weinheim, 1998, ISBN 3-527-29272-1.
3 R. Kannan, T. Sen, R. Poupko, Z. Luz and H. Zimmerman, J. Phys.
Chem. B, 2003, 107, 13033; H. Zimmermann, V. Bader, R. Poupko,
E. J. Wachtel and Z. Luz, J. Am. Chem. Soc., 2002, 124, 15286–
15301; M. Lehmann, M. Jahr, B. Donnio, R. Graf, S. Gemming
and I. Popov, Chem.–Eur. J., 2008, 14, 3562–3576.
The conformational molecular sketches a and c (Fig. 6), cor-
responding alternatively to glucoside and mannoside cores,
reveal fewer voids than their corresponding counterparts b and d,
and thus space filling effects would favour the first two confor-
mations.
Comparing the nanoscale self-organizing properties of G2 and
M2, the space filling efficiency effect is the predominant factor in
rationalizing their different thermal and mesomorphic properties.
3. Conclusions
4 C. Tschierske, Chem. Soc. Rev., 2007, 36, 1930; M. Lehmann,
M. Jahr, F. C. Grozema, R. D. Abellon, L. D. A. Siebbeles and
M. Muller, Adv. Mater., 2008, 20, 4414–4418; R. Mezzenga,
€
J. Ruokolainen, N. Canilho, E. Kasemi, D. A. Schluter, W. B. Lee
and G. H. Fredrickson, Soft Matter, 2009, 5, 92–97.
A novel series of tetrapodal star-shaped carbohydrate-based
chiral liquid crystals have been synthesised. The inner cores
consist of glucoside or mannoside derivatives, which can acquire
several flexible conformations. The effect of the flexible spacer
length on the liquid crystalline property was investigated.
G1 and M1, incorporating long spacer C11, display wide
temperature range SmA mesophases. In the case of G2 and M2,
bearing shorter arms C6, the tetramers exhibit chiral nematic
self-ordering, associated with an increase in the glassy tempera-
ture transitions, independently of the chiral core structure.
Furthermore, upon changing the chiral core structure from
glucoside to mannoside, clearing-point temperature depression
was observed, regardless of the length of the spacer.
€
5 J. W. Goodby, V. Gortz, S. J. Cowling, G. Mackenzie, P. Martin,
D. Plusquellec, T. Benvegnu, P. Boullanger, D. Lafont,
Y. Queneau, S. Chambert and J. Fitremann, Chem. Soc. Rev., 2007,
36, 1971–2032, and references within C. M. Paleos, Mol. Cryst. Liq.
Cryst., 1994, 243, 159–183; C. Tschierske, Prog. Polym. Sci., 1996,
21, 775–852; G. A. Jeffrey and L. M. Wingert, Liq. Cryst., 1992, 12,
179–202; H. Prade, R. Miethchen and V. Vill, J. Prakt. Chem./
Chem.-Ztg., 1995, 337, 427–440.
6 M. Tian, B. Y. Zhang, Y. H. Cong, N. Zhang and D. S. Yao, J. Mol.
Struct., 2009, 923(1–3), 39–44; H. Akiyama, A. Tanaka,
H. Hiramatsu, J. Nagasawa and N. Tamaoki, J. Mater. Chem.,
2009, 19, 5956–5963; B. Zhang, W. Xiao, Y. Cong and Y. Zhang,
Liq. Cryst., 2007, 34(10), 1129–1136; W. Q. Xiao, B. Y. Zhang and
Y. H. Cong, Chem. Lett., 2007, 938–939.
In summary, the fine-tuning of the mesomorphic properties of
the tetramer polypedes Gn and Mn can be achieved depending on
carbohydrate-based conformationally dynamic chiral core
structure and the spacer length, controlling the degree of the
decoupling between the core and the cyanobiphenyls. Therefore,
tailoring the thermo-mesomorphic behaviour of the super-
molecular tetrapedes Gn and Mn can be achieved by combining
the core chirality and spacer length.
7 P. Sears and C. H. Wong, Proc. Natl. Acad. Sci. U. S. A., 1996, 93,
12086–12093; Encyclopedia of supramolecular chemistry, ed.
J. L. Atwood and J. W. Steed, Taylor & Francis Ltd, London,
€
2004, A. Lutzen, pp. 169–177, ISBN: 0824747232 A.
8 R. Lunkwitz, C. Tschierske and S. Diele, J. Mater. Chem., 1997, 7(10),
2001–2012; Y. Xia, R. Verduzco, R. H. Grubbs and J. A. Kornfield,
J. Am. Chem. Soc., 2008, 130(5), 1735–1740.
9 Themed issue: Nanoscale chirality, Chem. Soc. Rev., 2009, (3);
Materials-Chirality (Topics in Stereochemistry Vol. 24), ed. M. M.
Green, R. J. M. Nolte and E. W. Meijer, John Wiley & Sons,
Hoboken, New Jersey, 2003, ISBN: 9780471054979, Online ISBN:
9780471471899.
10 H. Finkelmann, M. Happ, M. Portugal and H. Ringsdorf, Makromol.
Chem., 1978, 179, 2541–2544.
€
11 D. P. E. Smith, H. Horber, C. Gerber and G. Binnig, Science, 1989,
245, 43–45; D. P. E. Smith and W. H. Heckl, Nature, 1990, 346,
Acknowledgements
This work has been financed by EPSRC Grant EP/E064299/1
within the EUROCORES Programme SONS II of the Euro-
pean Science Foundation. We also thank the EPSRC
Mass Spectrometry Service at Swansea for MALDI-TOF MS
analyses.
€
616–617; D. P. E. Smith, J. K. H. Horber, G. Binnig and H. Nejoh,
Nature, 1990, 344, 641–644; S. Taki, T. Kadotani and S. Kai,
J. Phys. Soc. Jpn., 1999, 68(4), 1286–1291.
This journal is ª The Royal Society of Chemistry 2010
Soft Matter, 2010, 6, 1958–1963 | 1963