Journal of the American Chemical Society
ARTICLE
Org. Lett. 2008, 10, 2565–2568. (k) Xiao, W.; Passerone, D.; Ruffieux, P.;
Aiet-Mansour, K.; Gr€oning, O.; Tosatti, E.; Siegel, J. S.; Fasel, R. J. Am.
Chem. Soc. 2008, 130, 4767–4771. (l) Pꢀerez, E. M.; Capodilupo, A. L.;
Fernꢀandez, G.; Sꢀanchez, L.; Viruela, P. M.; Viruela, R.; Ortí, E.; Bietti,
M.; Martín, N. Chem. Commun. 2008, 4567–4569. (m) Marois, J.-S.;
Cantin, K.; Desmarais, A.; Morin, J.-F. Org. Lett. 2008, 10, 33–36. (n)
Liu, S.-Q.; Wang, D.-X.; Zheng, Q.-Y.; Wang, M.-X. Chem. Commun.
2007, 3856–3858. (o) Pꢀerez, E. M.; Sierra, M.; Sꢀanchez, L.; Torres,
M. R.; Viruela, R.; Viruela, P. M.; Ortí, E.; Martín, N. Angew. Chem., Int.
Ed. 2007, 46, 1847–1851. (p) Sygula, A.; Fronczek, F. R.; Sygula, R.;
Rabideau, P. W.; Olmstead, M. M. J. Am. Chem. Soc. 2007, 129, 3842–
3843. (q) Huerta, E.; Metselaar, G. A.; Fragoso, A.; Santos, E.; Bo, C.; de
Mendoza, J. Angew. Chem., Int. Ed. 2007, 46, 202–205. (r) Huerta, E.;
Cequier, E.; de Mendoza, J. Chem. Commun. 2007, 5016–5018. (s)
Yanagisawa, M.; Tashiro, K.; Yamasaki, M.; Aida, T. J. Am. Chem. Soc.
2007, 129, 11912–11913. (t) Pꢀerez, E. M.; Sꢀanchez, L.; Fernꢀandez, G.;
Martín, N. J. Am. Chem. Soc. 2006, 128, 7172–7173. (u) Hosseini, A.;
Taylor, S.; Accorsi, G.; Armaroli, N.; Reed, C. A.; Boyd, P. D. W. J. Am.
Chem. Soc. 2006, 128, 15903–15913. (v) Shoji, Y.; Tashiro, K.; Aida, T.
J. Am. Chem. Soc. 2006, 128, 10690–10691.
(4) For a review on fullerene materials constructed by self-assembly,
see: (a) Nakanishi, T. Chem. Commun. 2010, 46, 3425–3436. For
selected recent examples, see:(b) Xue, P.; Lu, R.; Zhao, L.; Xu, D.;
Zhang, X.; Li, K.; Song, Z.; Yang, X.; Takafuji, M.; Ihara, H. Langmuir
2010, 26, 6669–6675. (c) Haino, T.; Hirai, E.; Fujiwara, Y.; Kashihara, K.
Angew. Chem., Int. Ed. 2010, 49, 7899–7903. (d) Zhang, X.; Takeuchi, M.
Angew. Chem., Int. Ed. 2009, 48, 9646–9651. (e) D’Souza, F.; Maligaspe,
E.; Ohkubo, K.; Zandler, M. E.; Subbaiyan, N. K.; Fukuzumi, S. J. Am.
Chem. Soc. 2009, 131, 8787–8797. (f) Wang, J.; Shen, Y.; Kessel, S.;
Fernandes, P.; Yoshida, K.; Yagai, S.; Kurth, D. G.; Mohwald, H.;
Nakanishi, T. Angew. Chem., Int. Ed. 2009, 48, 2166–2170. (g) Tsunashima,
R.; Noro, S.-i.; Akutagawa, T.; Nakamura, T.; Kawakami, H.; Toma, K.
Chem.—Eur. J. 2008, 14, 8169–8176. (h) Nakanishi, T.; Michinobu, T.;
Yoshida, K.; Shirahata, N.; Ariga, K.; Mohwald, H.; Kurth, D. G. Adv.
Mater. 2008, 20, 443–446. (i) Fernꢀandez, G.; Sꢀanchez, L.; Pꢀerez, E. M.;
Martín, N. J. Am. Chem. Soc. 2008, 130, 10674–10683. (j) Fernꢀandez, G.;
Pꢀerez, E. M.; Sꢀanchez, L.; Martín, N. J. Am. Chem. Soc. 2008, 130, 2410–
2411. (k) Fernꢀandez, G.; Pꢀerez, E. M.; Sꢀanchez, L.; Martín, N.
Angew. Chem., Int. Ed. 2008, 47, 1094–1097. (l) Araki, Y.; Chitta, R.;
Sandanayaka, A. S. D.; Langenwalter, K.; Gadde, S.; Zandler, M. E.; Ito,
O.; D’Souza, F. J. Phys. Chem. C 2008, 112, 2222–2229. (m) Barrau, S.;
Heiser, T.; Richard, F.; Brochon, C.; Ngov, C.; van de Wetering, K.;
Hadziioannou, G.; Anokhin, D. V.; Ivanov, D. A. Macromolecules 2008,
41, 2701–2710. (n) Schmittel, M.; He, B.; Mal, P. Org. Lett. 2008, 10,
2513–2516. (o) Yoshimoto, S.; Tsutsumi, E.; Narita, R.; Murata, Y.;
Murata, M.; Fujiwara, K.; Komatsu, K.; Ito, O.; Itaya, K.
J. Am. Chem. Soc. 2007, 129, 4366–4376. (p) Wessendorf, F.; Gnichwitz,
J.-F.; Sarova, G. H.; Hager, K.; Hartnagel, U.; Guldi, D. M.; Hirsch, A.
J. Am. Chem. Soc. 2007, 129, 16057–16071. (q) Zhong, Y.-W.; Matsuo,
Y.; Nakamura, E. J. Am. Chem. Soc. 2007, 129, 3052–3053. (r) Hahn, U.;
Gegout, A.; Duhayon, C.; Coppel, Y.; Saquet, A.; Nierengarten, J.-F.
Chem. Commun. 2007, 516–518. (s) Bonifazi, D.; Kiebele, A.; Stohr, M.;
Cheng, F.; Jung, T.; Diederich, F.; Spillmann, H. Adv. Funct. Mater. 2007,
17, 1051–1062. (t) Pan, G.-B.; Cheng, X.-H.; Hoeger, S.; Freyland, W.
J. Am. Chem. Soc. 2006, 128, 4218–4219.
Commun. 1996, 2615–2616. (j) Araki, K.; Akao, K.; Ikeda, A.; Suzuki, T.;
Shinkai, S. Tetrahedron Lett. 1996, 37, 73–76.
(6) (a) Rio, Y.; Nierengarten, J.-F. Tetrahedron Lett. 2002, 43,
4321–4324. (b) Felder, D.; Heinrich, B.; Guillon, D.; Nicoud, J.-F.;
Nierengarten, J.-F. Chem.—Eur. J. 2000, 6, 3501–3507. (c) Nierengar-
ten, J.-F.; Oswald, L.; Eckert, J.-F.; Nicoud, J.-F.; Armaroli, N. Tetra-
hedron Lett. 1999, 40, 5681–5684. (d) Matsubara, H.; Shimura, T.;
Hasegawa, A.; Semba, M.; Asano, K.; Yamamoto, K. Chem. Lett. 1998,
1099–1100. (e) Atwood, J. L.; Barnes, M. J.; Gardiner, M. G.; Raston,
C. L. Chem. Commun. 1996, 1449–1450. (f) Steed, J. W.; Junk, P. C.;
Atwood, J. L.; Barnes, M. J.; Raston, C. L.; Burkhalter, R. S. J. Am. Chem.
Soc. 1994, 116, 10346–10347.
(7) (a) Mueck-Lichtenfeld, C.; Grimme, S.; Kobryn, L.; Sygula, A.
Phys. Chem. Chem. Phys. 2010, 12, 7091–7097. (b) Georghiou, P. E.;
Tran, A. H.; Mizyed, S.; Bancu, M.; Scott, L. T. J. Org. Chem. 2005, 70,
6158–6163. (c) Mizyed, S.; Georghiou, P.; Bancu, M.; Cuadra, B.; Rai,
A. K.; Cheng, P.; Scott, L. T. J. Am. Chem. Soc. 2001, 123, 12770–
12774.
(8) (a) Kawase, T.; Kurata, H. Chem. Rev. 2006, 106, 5250–5273. (b)
Kawase, T.; Tanaka, K.; Shiono, N.; Seirai, Y.; Oda, M. Angew. Chem., Int.
Ed. 2004, 43, 1722–1724. (c) Kawase, T.; Fujiwara, N.; Tsutumi, M.;
Oda, M.; Maeda, Y.; Wakahara, T.; Akasaka, T. Angew. Chem., Int. Ed.
2004, 43, 5060–5062. (d) Kawase, T.; Tanaka, K.; Seirai, Y.; Shiono, N.;
Oda, M. Angew. Chem., Int. Ed. 2003, 42, 5597–5600.
(9) (a) Sato, H.; Tashiro, K.; Shinmori, H.; Osuka, A.; Murata, Y.;
Komatsu, K.; Aida, T. J. Am. Chem. Soc. 2005, 127, 13086–13087. (b)
Shoji, Y.; Tashiro, K.; Aida, T. J. Am. Chem. Soc. 2004, 126, 6570–6571.
(c) Ayabe, M.; Ikeda, A.; Kubo, Y.; Takeuchi, M.; Shinkai, S. Angew.
Chem., Int. Ed. 2002, 41, 2790–2792. (d) Sun, D.; Tham, F. S.; Reed,
C. A.; Chaker, L.; Boyd, P. D. W. J. Am. Chem. Soc. 2002, 124, 6604–
6612. (e) Kubo, Y.; Sugasaki, A.; Ikeda, M.; Sugiyasu, K.; Sonoda, K.;
Ikeda, A.; Takeuchi, M.; Shinkai, S. Org. Lett. 2002, 4, 925–928. (f)
Zheng, J.-Y.; Tashiro, K.; Hirabayashi, Y.; Kinbara, K.; Saigo, K.; Aida, T.;
Sakamoto, S.; Yamaguchi, K. Angew. Chem., Int. Ed. 2001, 40, 1857–1861.
(10) Gil-Ramírez, G.; Karlen, S. D.; Shundo, A.; Porfyrakis, K.; Ito,
Y.; Briggs, G. A. D.; Morton, J. J. L.; Anderson, H. L. Org. Lett. 2010, 12,
3544–3547.
(11) Song, J.; Aratani, N.; Shinokubo, H.; Osuka, A. J. Am. Chem. Soc.
2010, 132, 16356–16357.
(12) Isla, H.; Gallego, M.; Pꢀerez, E. M.; Viruela, R.; Ortí, E.; Martín,
N. J. Am. Chem. Soc. 2010, 132, 1772–1773.
(13) Continous variation plots to confirm the stoichiometries of the
associates were also carried out. For the sake of brevity, only those
indicating 2:1 stoichiometry are shown. The Job’s plot of p-xylmac12 vs
C
60 can bee seen in ref 12.
(14) Minimizations were carried out utilizing the AMBER force field
included in the HyperChem molecular modelling system. The AMBER
force field was selected because it includes a term for van der Waals and
electrostatic interactions. See: Cornell, W. D.; Cieplak, P.; Bayly, C. I.;
Gould, I. R.; Merz, K. M., Jr.; Ferguson, D. M.; Spellmeyer, D. C.; Fox,
T.; Caldwell, J. W.; Kollman, P. A. J. Am. Chem. Soc. 1995, 117, 5179. In
the case of p-xylmac12, we have previously reported calculations at the
DFT (BH&H/6-31G**) level (see ref 12). Because of the size of the
collection of macrocycles, in this case we have resorted to less demand-
ing molecular mechanics. The geometry optimization yields nearly
identical results with both approaches. All optimizations were carried
out with the E isomer of the corresponding macrocycle. We have
previously shown that there is hardly any difference between the cavities
of the E and Z macrocycles (see ref 12).
(5) (a) Nielsen, K. A.; Sarova, G. H.; Martín-Gomis, L.; Fernꢀandez-
Lazaro, F.; Stein, P. C.; Sanguinet, L.; Levillain, E.; Sessler, J. L.; Guldi,
D. M.; Sastre-Santos, A.; Jeppesen, J. O. J. Am. Chem. Soc. 2008, 130,
460–462. (b) Haino, T.; Matsumoto, Y.; Fukazawa, Y. J. Am. Chem. Soc.
2005, 127, 8936–8937. (c) Haino, T.; Yanase, M.; Fukunaga, C.;
Fukazawa, Y. Tetrahedron 2006, 62, 2025–2035. (d) Haino, T.; Fuku-
naga, C.; Fukazawa, Y. Org. Lett. 2006, 8, 3545–3548. (e) Haino, T.;
Araki, H.; Fujiwara, Y.; Tanimoto, Y.; Fukazawa, Y. Chem. Commun.
2002, 2148–2149. (f) Haino, T.; Yanase, M.; Fukazawa, Y. Angew.
Chem., Int. Ed. 1998, 37, 997–998. (g) Haino, T.; Yanase, M.; Fukazawa,
Y. Angew. Chem., Int. Ed. 1997, 36, 259–260. (h) Wu, J.-C.; Wang, D.-X.;
Huang, Z.-T.; Wang, M.-X. Tetrahedron Lett. 2009, 50, 7209–7212. (i)
Raston, C. L.; Atwood, J. L.; Nichols, P. J.; Sudria, I. B. N. Chem.
(15) Mizyed, S.; Georghiou, P. E.; Ashram, M. J. Chem. Soc., Perkin
Trans. 2 2000, 277–280.
(16) Semenov, K. N.; Charykov, N. A.; Keskinov, V. A.; Piartman,
A. K.; Blokhin, A. A.; Kopyrin, A. A. J. Chem. Eng. Data 2010, 55, 13–36.
(17) Calix[4]pyrrole shows log Ka = 6.2 and 5.8 toward C70 in
CHCl3 and o-DCB, respectively: Pal, D.; Goswami, D.; Nayak, S. K.;
Chattopadhyay, S.; Bhattacharya, S. J. Phys. Chem. A 2010, 114, 6776–
6786.
3190
dx.doi.org/10.1021/ja111072j |J. Am. Chem. Soc. 2011, 133, 3184–3190