carbon-nitrogen bond forming reactions via electrophi-
lic trapping.7 In the present work, by taking advantage
of the well-developed Pd-catalyzed C-N bond forming
process,8 we became interested in studying the Pd-
catalyzed intramolecular trapping of Blaise reaction
intermediate 3 to construct the indole moiety 4
(Scheme 1a). In addition, if chemoselective intramo-
lecular N-alkylation proceeded with the intermediate 6
having chloroalkyl appendages, the intramolecular N-al-
kylative/Pd-catalyzed N-arylative trapping cascade
might be possible and provide a new one-pot route to
N-fused indoles 7 (Scheme 1b).9
Scheme 1. Pd-Catalyzed Intramolecular Trapping Strategies for
Tandem One-Pot Synthesis of (a) Indole and (b) N-Fused Indole
Derivatives
Table 1. Optimization Study for the Pd-Catalyzed N-Arylative
Trapping of the Blaise Intermediate 3aa
of tandem reactions is a challenging facet and has become
increasingly important in organic synthesis.4 Due to the
functional group tolerance, the electrophilic trapping of
the zinc enolate intermediates is one of the most fre-
quently employed strategies for tandem carbon-carbon
bond formation reactions.5 For example, Krische et al.
reported the intramolecular electrophilic trapping of
the zinc enolates, generated by Cu-catalyzed conjugate
addition of organozinc to enones.5d Quite recently,
Johnson et al. elegantly developed the double Re-
formatsky reaction and the tandem Reformatsky/
quaternary Claisen condensation, through the elec-
trophilic trapping of zinc enolate intermediates gener-
ated by the reaction of Reformatsky reagents with
silylglyoxalates.5e,f Along these lines, we recently envi-
sioned that the Blaise reaction intermediate, generated
by the addition of a Reformatsky reagent to nitriles,6
could be considered as a reactive aza-isostere of the zinc
enolate of β-ketoesters for tandem carbon-carbon and
temp time yield
entry
Pd/base
solvent (°C)
(h)
(%)b
1c
2
Pd(dba)2þSPhos/-
Pd(PPh3)4/-
THF
THF
DMF
65
65
48
48
24
48
48
15
24
24
24
15
-
-
>10
47
3
Pd(PPh3)4/-
120
4d
5e
6
Pd(dba)2þSPhos/NaHMDS toluene 110
Pd(dba)2þXPhos/NaHMDS toluene 110
38
Pd(dba)2þSPhos/tBuLi
Pd(PPh3)4 /NaHMDS
Pd(PPh3)4 /NaHMDS
Pd(PPh3)4 /NaHMDS
Pd(PPh3)4 /tBuOK
toluene 110
74
7
DMF
120
120
31
8
DMSO
60
9
toluene 110
DMF 120
30
10
84
a Conditions: Ethyl (o-bromophenyl)-R-bromoacetate (1.3 equiv)
was added over 1 h to a solution of 1a (2.29 mmol) and Zn (2.0 equiv)
in THF (0.9 mL) at reflux. After 1.5 h of reflux, the palladium catalyst
[Pd(PPh3)4 (7.4 mol %) or Pd(dba)2 (5 mol %)/ligand (10 mol %)],
solvent (THF/solvent = 1/10, v/v), and base (1.3 equiv) were added at
room temperature. b Isolated yield by column chromatography. c SPhos:
2-Dicyclohexylphosphino-20,60-dimethoxybiphenyl. d NaHMDS: So-
dium bis(trimethylsilyl)amide. e XPhos: 2-Dicyclohexylphosphino-
20,40.60-triisopropylbiphenyl.
(4) (a) Ho, T.-L. Tandem Organic Reactions; Wiley: New York, 1992.
(b) Tietze, L. F.; Brasche, G.; Gericke, K. Domino Reactions in Organic
Synthesis; Wiley-VCH: Weinheim, 2006. (c) Nicolaou, K. C.; Edmonds,
€
D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134. (d) Furstner, A.
Angew. Chem., Int. Ed. 2009, 48, 1364. (e) Parsons, P. J.; Penkett, C. S.;
Shell, A. J. Chem. Rev. 1999, 96, 195.
To investigate the reactivity of the Blaise reaction inter-
mediate under Pd-catalyzed intramolecular coupling con-
ditions, we chose the intermediate 3a, prepared by the
reactions of benzonitrile (1a) with a Reformatsky reagent
generated in situ from ethyl (o-bromophenyl)-R-bromoa-
cetate 2 (Table 1).
(5) (a) Feringa, B. L.; Pineschi, M.; Arnold, L. A.; Imbos, R.; de
Vries, A. H. M. Angew. Chem., Int. Ed. Engl. 1997, 36, 2620. (b)
Alexakis, A.; Trevitt, G. P.; Bernardinelli, G. J. Am. Chem. Soc. 2001,
123, 4358. (c) Mizutani, H.; Degrado, S. J.; Hoveyda, A. H. J. Am.
Chem. Soc. 2002, 124, 779. (d) Agapiou, K.; Cauble, D. F.; Krische, M. J.
J. Am. Chem. Soc. 2004, 126, 4528. (e) Greszler, S. N.; Johnson, J. S.
Angew. Chem., Int. Ed. 2009, 48, 3689. (f) Greszler, S. N.; Malinowski,
J. T.; Johnson, J. S. J. Am. Chem. Soc. 2010, 132, 17393.
(6) (a) Blaise, E. E. C.R. Hebd. Seances Acad. Sci. 1901, 132, 478. (b)
Blaise, E. E. C.R. Hebd. Seances Acad. Sci. 1901, 132, 987. (c) Rathke,
M. W.; Weipert, P. In Zinc Enolates:The Reformatsky and Blaise
Reaction in Comprehensive Organic Reactions; Trost, B. M., Ed.; Perga-
mon: Oxford, 1991; Vol. 2, pp 277-299. (d) Rao, H. S. P.; Rafi, S.;
Padmavathy, K. Tetrahedron 2008, 64, 8037.
(7) (a) Chun, Y. S.; Lee, K. K.; Ko, Y. O.; Shin, H.; Lee, S.-g. Chem.
Commun. 2008, 5098. (b) Ko, Y. O.; Chun, Y. S.; Park, C.-L.; Kim, Y.;
Shin, H.; Ahn, S.; Hong, J.; Lee, S.-g. Org. Biomol. Chem. 2009, 7, 1132.
(c) Chun, Y. S.; Ko., Y. O.; Shin, H.; Lee, S.-g. Org. Lett. 2009, 11, 3414.
(d) Chun, Y. S.; Ryu, K. Y.; Ko, Y. O.; Hong, J. Y.; Hong, J.; Shin, H.;
Lee, S.-g. J. Org. Chem. 2009, 74, 7556. (e) Ko, Y. O.; Chun, Y. S.; Kim,
Y.; Kim, S. J.; Shin, H.; Lee, S.-g. Tetrahedron Lett. 2010, 51, 6893.
Considering the recently disclosed Pd-catalyzed cross-
couplings of the Reformatsky reagents with aryl halides
(8) (a) Jiang, L.; Buchwald, S. L. Metal-Catalyzed Cross Coupling
Reactions, 2nd ed.; Wiley-VCH: Weinheim, 2004; Vol. 2, pp 699-760. (b)
Muci, A. R.; Buchwald, S. L. Top. Curr. Chem. 2002, 219, 131. (c)
Hartwig, J. F. In Handbook of Organopalladium Chemistry of Organic
Synthesis; Wiley-Interscience: New York, 2002; Vol. 1, pp 1051-1069. (d)
Schlummer, B.; Scholz, U. Adv. Synth. Catal. 2004, 346, 1599. (e)
Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127.
(9) Alkylative trapping of the Blaise reaction intermediate, see:
Hannick, S. M.; Kishi, Y. J. Org. Chem. 1983, 48, 3833.
Org. Lett., Vol. 13, No. 6, 2011
1351