Page 5 of 6
ACS Catalysis
(6) For representative tandem coupling, see: Walker, J. A.;
that this study will be of great interest. Equally im-
1
2
3
4
5
6
7
8
Vickerman, K. L.; Humke, J. N.; Stanley, L. M. J. Am. Chem. Soc.
2017, 139, 10228-10231 and references cited therein.
portantly, this process provides a novel method for gener-
ating aryl electrophiles, and may unlock a broad range of
arylations by synergistic catalysis mechanisms. Studies
toward expanding the reaction scope to other precursors
as well as on further developments of C–N activation
technologies are actively pursued in our laboratory and
will be reported in due course.
(7) For classic studies on amide destabilization in bridged lac-
tams, see: (a) Tani, K.; Stoltz, B. M. Nature 2006, 441, 731-734. (b)
Greenberg, A.; Venanzi, C. A. J. Am. Chem. Soc. 1993, 115, 6951-
6957. (c) Aubé, J. Angew. Chem. Int. Ed. 2012, 51, 3063-3065.
(8) For pertinent studies on amide destabilization in N–C
cross-coupling, see: (a) Szostak, R.; Shi, S.; Meng, G.; Lalancette,
R.; Szostak, M. J. Org. Chem. 2016, 81, 8091-8094. (b) Pace, V.;
Holzer, W.; Meng, G.; Shi, S.; Lalancette, R.; Szostak, R.; Szostak,
M. Chem. Eur. J. 2016, 22, 14494-14498. (c) Szostak, R.; Meng, G.;
Szostak, M. J. Org. Chem. 2017, 82, 6373-6378. (d) See, ref. 1c. (e)
For acyl-Negishi coupling using N,N-Boc2-amides, see: Shi, S.;
Szostak, M. Org. Lett. 2016, 18, 5872-5875.
ASSOCIATED CONTENT
Supporting Information
Procedures and analytical data. This material is available free
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
AUTHOR INFORMATION
Corresponding Author
(9) (a) Roughley, S. D.; Jordan, A. M. J. Med. Chem. 2011, 54,
3451-3479. (b) Kaspar, A. A.; Reichert, J. M. Drug Discov. Today
2013, 18, 807-817. (c) Marchildon, K. Macromol. React. Eng. 2011,
5, 22-54. (d) Chen, Y.; Turlik, A.; Newhouse, T. J. Am. Chem. Soc.
2016, 138, 1166-1169.
ACKNOWLEDGMENT
Rutgers University and the NSF (CAREER CHE-1650766) are
gratefully acknowledged for support. The Bruker 500 MHz
spectrometer used in this study was supported by the NSF-
MRI grant (CHE-1229030).
(10) (a) Larock, R. C. Comprehensive Organic Transformations;
Wiley: New York, 1999. (b) Zabicky, J. The Chemistry of Amides;
Interscience: New York, 1970.
(11) Select reviews on C–H activation: (a) Yu, J. Q. Science of
Synthesis: Catalytic Transformations via C–H Activation; Thieme:
Stuttgart, 2015. (b) Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.;
Zhang, Y. Org. Chem. Front. 2015, 2, 1107-1295. (c) Daugulis, O.;
Roane, J.; Tran, L. D. Acc. Chem. Res. 2015, 48, 1053-1064. (d)
Miao, J.; Ge, H. Eur. J. Org. Chem. 2015, 7859-7868. (e) Rossi, R.;
Bellina, F.; Lessi, M.; Manzini, C. Adv. Synth. Catal. 2014, 356, 17-
117. (f) Engle, K. M.; Mei, T. S.; Wasa, M.; Yu, J. Q. Acc. Chem.
Res. 2012, 45, 788-802. (g) Yamaguchi, J.; Yamaguchi, A. D.;
Itami, K. Angew. Chem. Int. Ed. 2012, 51, 8960-9009. (h) Yeung,
C. S.; Dong, V. M. Chem. Rev. 2011, 111, 1215-1292. (i) Lyons, T.;
Sanford, M. Chem. Rev. 2010, 110, 1147-1169.
REFERENCES
(1) (a) Greenberg, A.; Breneman, C. M.; Liebman, J. F. The Am-
ide Linkage: Structural Significance in Chemistry, Biochemistry
and Materials Science; Wiley-VCH: New York, 2003. (b) Pattabi-
raman, V. R.; Bode, J. W. Nature 2011, 480, 471-479. (c) Ruider, S.;
Maulide, N. Angew. Chem. Int. Ed. 2015, 54, 13856-13858.
(2) For reviews on N–C functionalization, see: (a) Takise, R.;
Muto, K.; Yamaguchi, J. Chem. Soc. Rev. 2017, DOI:
10.1039/c7cs00182g. (b) Meng, G.; Shi, S.; Szostak, M. Synlett
2016, 27, 2530-3540. (c) Liu, C.; Szostak, M. Chem. Eur. J. 2017, 23,
7157-7173.
(12) (a) Hussain, I.; Singh, T. Adv. Synth. Catal. 2014, 356, 1661-
1696. (b) Modern Arylation Methods, Burke, A. J.; Marques, C. S.,
Eds.; Wiley-VCH: Weinheim, 2015.
(3) (a) Science of Synthesis: Cross-Coupling and Heck-Type Re-
actions, Molander, G. A.; Wolfe, J. P.; Larhed, M., Eds.; Thieme:
Stuttgart, 2013. (b)Metal-Catalyzed Cross-Coupling Reactions and
More, de Meijere, A.; Bräse, S.; Oestreich, M., Eds.; Wiley: New
York, 2014. (c) New Trends in Cross-Coupling; Colacot, T. J., Ed.;
The Royal Society of Chemistry: Cambridge, 2015.
(13) For a comprehensive review on C–H arylation with organ-
ometallics, see: Giri, R.; Thapa, S.; Kafle, A. Adv. Synth. Catal.
2014, 356, 1395-1411.
(14) For a recent C–H arylation of primary amines, see: Liu, Y.;
Ge, H. Nat. Chem. 2017, 9, 26-32.
(4) For representative acyl coupling, see: (a) Hie, L.; Nathel, N.
F. F.; Shah, T. K.; Baker, E. L.; Hong, X.; Yang, Y. F.; Liu, P.;
Houk, K. N.; Garg, N. K. Nature 2015, 524, 79-83. (b) Meng, G.;
Szostak, M. Org. Lett. 2015, 17, 4364-4367. (c) Lei, P.; Meng, G.;
Szostak, M. ACS Catal. 2017, 7, 1960-1965. (d) Meng, G.; Lei, P.;
Szostak, M. Org. Lett. 2017, 19, 2158-2161. (e) Amani, J.; Alam, R.;
Badir, S.; Molander, G. A. Org. Lett. 2017, 19, 2426-2429. (f) Ni, S.;
Zhang, W.; Mei, H.; Han, J.; Pan, Y. Org. Lett. 2017, 19, 2536-2539.
(g) Lei, P.; Meng, G.; Shi, S.; Ling, Y.; An, J.; Szostak, R.; Szostak,
M. Chem. Sci. 2017, 8, 6525-6530 and references cited therein.
(5) For representative decarbonylative coupling, see: (a)
Meng, G.; Szostak, M. Angew. Chem. Int. Ed. 2015, 54, 14518-
14522. (b) Shi, S.; Meng, G.; Szostak, M. Angew. Chem. Int. Ed.
2016, 55, 6959-6953. (c) Meng, G.; Szostak, M. Org. Lett. 2016, 18,
796. (d) Dey, A.; Sasmai, S.; Seth, K.; Lahiri, G. K.; Maiti, D. ACS
Catal. 2017, 7, 433-437. (e) Yue, H.; Guo, L.; Liao, H. H.; Cai, Y.;
Zhu, C.; Rueping, M. Angew. Chem. Int. Ed. 2017, 56, 4282-4285.
(f) Yue, H.; Guo, L.; Lee, S. C.; Liu, X.; Rueping, M. Angew. Chem.
Int. Ed. 2017, 56, 3972-3976. (g) Srimontree, W.; Cha-
tupheeraphat, A.; Liao, H. H.; Rueping, M. Org. Lett. 2017, 19,
3091-3094. (h) Shi, S.; Szostak, M. Org. Lett. 2017, 19, 3095-3098
and references cited therein.
(15) Ni: (a) Amaike, K.; Muto, K.; Yamaguchi, J.; Itami, K. J.
Am. Chem. Soc. 2012, 134, 13573-13576. (b) Muto, K.; Yamaguchi,
J.; Lei, A.; Itami, K. J. Am. Chem. Soc. 2013, 135, 16384-16387. (c)
Muto, K.; Hatakeyama, T.; Yamaguchi, J.; Itami, K. Chem. Sci.
2015, 6, 6792-6798. Co: (d) Song, W.; Ackermann, L. Angew.
Chem. Int. Ed. 2012, 51, 8251-8254. Rh: (e) Tobisu, M.; Yasui, K.;
Aihara, Y.; Chatani, N. Angew. Chem. Int. Ed. 2017, 56, 1877-1880.
(16) Select examples: Halides/pseudohalides: (a) Kametani, Y.;
Satoh, T.; Miura, M.; Nomura, M. Tetrahedron Lett. 2000, 41,
2655-2659. (b) Daugulis, O.; Zaitsev, V. G.; Angew. Chem. Int. Ed.
2005, 44, 4046-4048. (c) Berman, A. M.; Lewis, J. C.; Bergman, R.
G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 14926-14927. (d)
Kim, M.; Kwak, J.; Chang, S. Angew. Chem. Int. Ed. 2009, 48,
8935-8939. (e) Ackermann, L.; Althammer, A.; Born, R. Angew.
Chem. Int. Ed. 2006, 45, 2619-2622. (f) Roger, J.; Doucet, H. Org.
Biomol. Chem. 2008, 6, 169-174. Organometallics: (g) Sun, C. L.;
Li, B. J.; Shi, Z. J. Chem. Commun. 2010, 46, 677-685. Arenes: (h)
Zhao, X.; Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2010, 132,
5837-5844. Aroyl halides: (i) Zhao, X.; Yu, Z. J. Am. Chem. Soc.
2008, 130, 8136-8137. Anhydrides: (j) Jin, W.; Yu, Z.; He, W.; Ye,
5
ACS Paragon Plus Environment