954
J. W. Coe et al. / Tetrahedron Letters 52 (2011) 953–954
OCH2CCl3
O
O
CCl3
I
HN
N
O
N
H3C
N
H3C
I
conditions
Zn, AcOH
55%
H
H
Cl
5
9
11
12
fragmentation
conditions
10
11
CH3
N
o
2.5 eq. Troc-Cl, DCE, 80
C
40%
5%
60%
95%
O
CCl3
o
1.1 eq. Troc-Cl, n-Bu NI, DCE, 80
C
4
O
o
1.5 eq. Troc-Cl, NaI, acetone , 40
C
0%
96%
10
Scheme 2. Troc-mediated N-demethylation of 5.
Acknowledgments
Pcy3
Ru
Pcy3
Ph
O
Cl
Cl
O
J.W.C. thanks Bertrand L. Chenard and Art Nagel for helpful sug-
gestions inspiring these approaches.
F3C
O
N
N
F3C
1) allylamine, MeOH
2) allylMgBr, Et2O
3) TFAA
2% Grubbs cat.
86 - 99%
H
100%
Supplementary data
Br
Br
Br
13
14
15
Supplementary data (experimental procedures and supporting
data for all compounds) associated with this article can be found
O
O
Pd(OAc)2, P(o-tol)3
F3C
N
F3C
N
HN
TEA, DMF
Na2CO3
65%
H2, Pd/C
91%
80 oC, 16 h
87%
References and notes
16
17
18
1. (a) Cragg, G. M.; Newman, D. J.; Snader, K. M. J. Nat. Prod. 1997, 60, 52–60; (b)
Newman, D. J.; Cragg, G. M.; Snader, K. M. J. Nat. Prod. 2003, 66, 1022–1037; (c)
Kingston, D. G.; Newman, D. J. Curr. Opin. Drug Discovery Dev. 2005, 8, 207–227;
(d) Koehn, F. E.; Carter, G. T. Nat. Rev. Drug Disc. 2005, 4, 206–220; (e) Paterson,
I.; Anderson, E. A. Science 2005, 310, 451–453; (f) Jones, W. P.; Chin, Y. W.;
Kinghorn, A. D. Curr. Drug Targets 2006, 7, 247–264; (g) Wilson, R. M.;
Danishefsky, S. J. J. Org. Chem. 2006, 71, 8329–8351; (h) Baker, D. D.; Chu, M.;
Oza, U.; Rajgarhia, V. Nat. Prod. Rep. 2007, 24, 1225–1244.
2. (a) Coe, J. W.; Brooks, P. R.; Vetelino, M. G.; Wirtz, M. C.; Arnold, E. P.; Huang, J.;
Sands, S. B.; Davis, T. I.; Lebel, L. A.; Fox, C. B.; Shrikhande, A.; Heym, J. H.;
Schaeffer, E.; Rollema, H.; Lu, Y.; Mansbach, R. S.; Chambers, L. K.; Rovetti, C. C.;
Schulz, D. W.; Tingley, F. D., III; O’Neill, B. T. J. Med. Chem. 2005, 48, 3474–3478;
(b) Malec, D.; Langwinski, R. J. Pharm. Pharmacol. 1980, 32, 72–73; (c) Ossipov,
M. H.; Kovelowski, C. J.; Nichols, M. L.; Hruby, V. J.; Porreca, F. Pain 1995, 62,
287–293; (d) Baxter, M. G.; Follenfant, R. L.; Miller, A. A.; Sethna, D. M. Br. J.
Pharmacol. 1977, 59, 523; (e) Bloom, A. S.; Dewey, W. L.; Harris, L. S.; Brosius, K.
K. J. Pharmacol. Exp. Ther. 1976, 198, 33–41; (f) Blundell, C.; Slater, P. J. Pharm.
Pharmacol. 1977, 29, 306–307; (g) Chesher, G. B.; Dahl, C. J.; Everingham, M.;
Jackson, D. M.; Marchant-Williams, H.; Starmer, G. A. Br. J. Pharmacol. 1973, 49,
588–594; (h) Dewey, W. L.; Harris, L. S. J. Pharmacol. Exp. Ther. 1971, 179, 652–
659; (i) Gispen, W. H.; Van Wimersma Greidanus, T. B.; Waters-Ezrin, C.;
Zimmermann, E.; Krivoy, W. A.; De Wied, D. Eur. J. Pharmacol. 1975, 33, 99–105.
3. Fliri, A. F.; Loging, W. T.; Volkmann, R. A. Trends Pharmacol. Sci. 2010, 31, 547–
555.
Scheme 3. Metathesis–Heck route to bicyclic 18.
tional Troc–Cl was necessary to completely consume 5, as the HCl
formed in the pathway to 10 presumably protonates the starting
amine thereby protecting it from reaction with Troc–Cl. To en-
hance the nucleophilic pathway to 11 we introduced iodide ion,
which successfully circumvented the elimination pathway under
two conditions (see table, Scheme 2).8 Both reactions were com-
plete in less than 1 h with no elimination observed under the Fin-
kelstein conditions.9 Troc removal under standard conditions (Zn,
AcOH) provided 1,2,3,4,5,6-hexahydro-2,6-methano-3-benzazo-
cine (12) in four synthetic operations from 1 in 31% yield overall.
Benzazepine (18), a homolog of benzomorphan (12), was pre-
pared by a Heck-based sequence to generate the bicyclic core
(Scheme 3).10 The original preparation of 18 proceeded in eight-
steps and 3% yield overall.11 In our synthesis, 2-bromobenzalde-
hyde 13 was condensed with allylamine in MeOH and stripped of
solvent. After dissolving the residue in Et2O, the mixture was
cooled to À78 °C and then treated with allylMgBr. The resulting
salt was trapped in situ with trifluoroacetic anhydride to generate
14 in quantitative yield. Ring-closing metathesis converted this
crude material to tetrahydropyridine 15 reproducibly in excellent
yield. Standard Heck conditions afforded [3.2.1]-bicyclic adduct
16. The enamide was reduced by hydrogenation and the trifluoro-
acetamide was removed to give 2,3,4,5-tetrahydro-1,5-methano-
1H-2-benzazepine (18) in five steps and 50% overall yield for the
sequence.
4. Kanematsu, K.; Takeda, M.; Jacobson, A. E.; May, E. L. J. Med. Chem. 1969, 12,
405–408.
5. 2-Benzylpyridine is commercially available (CAS 101-82-6). For its preparation,
see: (a) Jerchel, D.; Noetzel, S.; Thomas, K. Chem. Ber. 1960, 93, 2966–2970; (b)
Ohmiya, H.; Yorimitsu, H.; Oshima, K. Chem. Lett. 2004, 33, 1240–1241; (c)
Panizzon, L. Helv. Chim. Acta 1944, 27, 1748–1756; (d) Yamashita, S.; Kurono,
N.; Senboku, H.; Tokuda, M.; Orito, K. Eur. J. Org. Chem. 2009, 8, 1173–1180.
6. Thyagarajan, G.; May, E. L. J. Heterocycl. Chem. 1971, 8, 465–468.
7. Rawal, V. H.; Jones, R. J.; Cava, M. P. J. Org. Chem. 1987, 52 1, 19–28.
8. For a related approach see Brooks, P. R.; Wirtz, M. C.; Vetelino, M. G.; Rescek, D.
M.; Woodworth, G. F.; Morgan, B. P.; Coe, J. W. J. Org. Chem. 1999, 64, 9719–
9721.
9. Baughman, T. W.; Sworen, J. C.; Wagener, K. B. Tetrahedron 2004, 60, 10943–
10948.
We used these compounds to examine their pharmacology as
described in the original work of the 1970s2 and in our effort to
discover varenicline.2a By modifying the original approach to ben-
zomorphan 12 and applying modern methodology to the prepara-
tion of benzazocine 19, efficient syntheses have been realized.
10. Sunderhaus, J. D.; Dockendorff, C.; Martin, S. F. Tetrahedron 2009, 65, 6454–
6469.
11. (a) Mokotoff, M.; Jacobsen, A. E. J. Heterocycl. Chem. 1970, 7, 773–778; (b)
Jacobsen, A. E.; Mokotoff, M. J. Med. Chem. 1970, 13, 7–9.