55
B. R. Buckley et al.
Letter
Synlett
(2) For reviews, see for example: (a) Bock, V. D.; Hiemstra, H.; van
Maarseveen, J. H. Eur. J. Org. Chem. 2006, 51. (b) Meldal, M.;
Tornøe, C. W. Chem. Rev. 2008, 108, 2952. (c) Amblard, F.; Cho, J.
H.; Schinazi, R. F. Chem. Rev. 2009, 109, 4207. (d) Themed collec-
tion ‘Click chemistry: Function follows form’ in Chem. Soc. Rev.
2010, 39, 1221–1408. (e) Topics in Heterocyclic Chemistry; Vol.
28; Košmrlj, J., Ed.; Springer: Berlin/Heidelberg, 2012, 1–232.
(f) Berg, R.; Straub, B. F. Beilstein J. Org. Chem. 2013, 9, 2715.
(g) Haldón, E.; Nicasio, M. C.; Pérez, P. J. Org. Biomol. Chem.
2015, 13, 9528.
(3) See, for example: (a) Malkoch, M.; Schleicher, K.;
Drockenmuller, E.; Hawker, C. J.; Russell, T. P.; Wu, P.; Fokin, V.
V. Macromolecules 2005, 35, 3663. (b) Ackermann, L.;
Potukuchi, H. K.; Landsberg, D.; Vicente, R. Org. Lett. 2008, 10,
3081. (c) Qin, A.; Lam, J. W. Y.; Tang, L.; Jim, C. J. W.; Zhao, H.;
Sun, J.; Tang, B. Z. Macromolecules 2009, 42, 1421.
(4) (a) Appukkuttan, P.; Dehaen, W.; Fokin, V. V.; Van der Eycken, E.
Org. Lett. 2004, 6, 4223. (b) Himo, F.; Lovell, T.; Hilgraf, R.;
Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V.
V. J. Am. Chem. Soc. 2005, 127, 210. (c) Urankar, D.; Košmrlj,
J. J. Comb. Chem. 2008, 10, 981. (d) Chandrasekhar, S.;
Seenaiah, M.; Kumar, A.; Reddy, C. R.; Mamidyala, S. K.; Kumar,
C. G.; Balasubramanian, S. Tetrahedron Lett. 2011, 52, 806.
(5) (a) Pachón, L. D.; Maarseveen, J. H.; Rotherberg, G. Adv. Synth.
Catal. 2005, 347, 811. See also: (b) Moore, E.; McInnes, S. J.;
Vogt, A.; Voelker, N. H. Tetrahedron Lett. 2011, 52, 2327.
(6) (a) Chassaing, S.; Kumarraja, M.; Sido, A. S. S.; Pale, P.; Sommer,
J. Org. Lett. 2007, 9, 883. (b) Chassaing, S.; Sido, A. S. S.; Alix, A.;
Kumarraja, M.; Pale, P. Chem. Eur. J. 2008, 14, 6713.
(17) For some earlier methods of preparation, see for example:
(a) Sazonova, V. A.; Kronrod, N. Y. Zh. Obshch. Khim. 1956, 26,
1876; Chem. Abstr. 1957, 51, 4981c. (b) Castro, C. E.; Stephens,
R. D. J. Org. Chem. 1963, 28, 2163. (c) Stephens, R. D.; Castro, C. E.
J. Org. Chem. 1963, 28, 3313. (d) Owsley, D. C.; Castro, C. E. Org.
Synth., Coll. Vol. VI 1988, 916. (e) Atkinson, R. E.; Curtis, R. F.;
Taylor, J. A. J. Chem. Soc. C 1967, 578. (f) Ito, H.; Arimoto, K.;
Sensui, H.-o.; Hosomi, A. Tetrahedron Lett. 1997, 38, 3977.
(18) Glaser reaction products have been observed previously when
using Cu(II) salts in the absence of a reducing agent. See:
(a) Kamata, K.; Kotani, M.; Yamaguchi, K.; Mizono, N. Angew
Chem. Int. Ed. 2008, 47, 2407. (b) Kamata, K.; Nakagawa, Y.;
Tamaguchi, K.; Mizono, N. J. Am. Chem. Soc. 2008, 130, 15304.
(19) Bistriazole Prepared from 1,7-Octadiyne and Benzyl Azide20
Benzyl azide (0.15 g, 1.1 mmol) and 1,7-octadiyne (0.053 g, 0.5
mmol) were added to a 3 mL vial containing MeOH (2 mL)
which was fitted with a magnetic stirrer bar. Copper(II) acetate
mono-hydrate was added (1 mg, 0.005 mmol, 0.1 mL from a
stock solution in MeOH containing 10 mg/mL), and the vial was
closed. The reaction mixture was then stirred and heated at
50 °C for 4 h on a stirrer hotplate fitted with an aluminium vial
holder and allowed to cool. The colourless precipitate was fil-
tered, washed with cold MeOH (2 × 5 mL), Et2O (5 mL), and
allowed to dry in air to give colourless crystals (0.13 g, 72%); mp
1
156–158 °C. H NMR (400 MHz, CDCl3): δ = 7.35–7.34 (6 H, m),
7.26–7.22 (4 H, m), 7.17 (2H, s), 5.47 (4 H, s), 2.72–2.68 (4 H, m),
1.72–1.69 (4 H, m) ppm. 13C NMR (100 MHz, CDCl3): δ = 148.7,
135.2, 129.3, 128.8, 128.2, 120.9, 54.2, 29.1, 25.7 ppm. HRMS:
m/z calcd for C22H24N6Na [M + Na]: 395.1960; found: 3955.1959.
(20) Saha, S.; Kaur, M.; Bera, J. K. Organometallics 2015, 34, 3047.
(21) Bistriazole Prepared from 1,8-Nonadiyne and Benzyl Azide22
A similar reaction gave colourless crystals (0.13 g, 69%); mp
(7) Yousuf, S. K.; Mukherjee, D.; Singh, B.; Maity, S.; Taneja, S. C.
Green Chem. 2010, 12, 1568.
(8) Wang, K.; Bi, X.; Liao, P.; Fang, Z.; Meng, X.; Zhang, Q.; Liu, Q.; Ji,
Y. Green Chem. 2011, 13, 562.
1
121–123 °C. H NMR (400 MHz, CDCl3): δ = 7.37–7.35 (6 H, m),
(9) (a) Lipshutz, B. H.; Taft, B. R. Angew Chem. 2006, 118, 8415.
(b) Lee, C.-T.; Huang, S.; Lipshutz, B. H. Adv. Synth. Catal. 2009,
351, 3139.
(10) (a) Buckley, B. R.; Dann, S. E.; Harris, D. P.; Heaney, H.; Stubbs, E.
C. Chem. Commun. 2010, 46, 2274. (b) Buckley, B. R.; Dann, S. E.;
Heaney, H. Chem. Eur. J. 2010, 16, 6278. (c) Buckley, B. R.; Dann,
S. E.; Harris, D. P.; Heaney, H.; Stubbs, E. C. Eur. J. Org. Chem.
2011, 770.
7.26–7.22 (4 H, m), 7.17 (2 H, s), 5.48 (4 H, s), 2.67 (4 H, t, J = 9.6
Hz), 1.71–1.60 (4 H, m), 1.40–1.37 (2 H, m) ppm. 13C NMR (100
MHz, CDCl3): δ = 148.9, 135.2, 129.3, 128.8, 128.2, 120.8, 54.2,
29.3, 28.9, 25.8 ppm. HRMS: m/z calcd for C23H26N6Na [M + Na]:
409.2117; found: 409.2113.
(22) Smith, C. D.; Baxendale, I. R.; Lanners, S.; Hayward, J. J.; Smith, S.
C.; Ley, S. V. Org. Biomol. Chem. 2007, 5, 1559.
(23) Triazole Prepared from p-Tolylethyne and 3-Trifluorometh-
ylbenzyl Azide (Table 2, Entry 2)
(11) Buckley, B. R.; Butterworth, R.; Dann, S. E.; Heaney, H.; Stubbs,
E. C. ACS Catal. 2015, 5, 793.
3-Trifluoromethylbenzyl azide (0.34 g, 1.7 mmol) and p-tolyl-
ethyne (0.30 g, 2.6 mmol) were added to a microwave tube (5
mL) fitted with a magnetic stirrer bar. Copper (II) acetate mono-
hydrate (3.4 mg, 0.017 mmol) was added and the mixture sus-
pended in MeOH (5 mL). The reaction mixture was then heated
in the microwave apparatus at 100 °C for 20 min and allowed to
cool. The reaction mixture was added to EtOAc (50 mL) and H2O
(50 mL), separated, and the aqueous layer extracted with EtOAc
(2 × 50 mL). The EtOAc layers were evaporated under reduced
pressure to give an off-white solid which after recystallisation
from Et2O gave the product as colourless crystals (0.53g, 98%);
(12) (a) Brotherton, W. S.; Michaels, H. A.; Simmons, J. T.; Clark, R. J.;
Dalal, N. S.; Zhu, L. Org. Lett. 2009, 11, 4954. (b) Kuang, G.-C.;
Michaels, H. A.; Simmons, J. T.; Clark, R. J.; Zhu, L. J. Org. Chem.
2010, 75, 6540. (c) Brotherton, W. S.; Guha, P. M.; Phan, H.;
Clark, R. J.; Shatruk, M.; Zhu, L. Dalton Trans. 2011, 40, 3655.
(d) Kuang, G.-C.; Guha, P. M.; Brotherton, W. S.; Simmons, J. T.;
Stankee, L. A.; Nguyen, B. T.; Clark, R. J.; Zhu, L. J. Am. Chem. Soc.
2011, 133, 13984. (e) Michaels, H. A.; Zhu, L. Chem. Asian J.
2011, 5, 2825. (f) Guha, P. M.; Phan, H.; Kinyon, J. S.; Brotherton,
W. S.; Sreenath, K.; Simmons, J. T.; Wang, Z.; Clark, R. J.; Dalal, N.
S.; Shatruk, M.; Zhu, L. Inorg. Chem. 2012, 51, 3465. (g) Yuan, Z.;
Kuang, G.-C.; Clark, R. J.; Zhu, L. Org. Lett. 2012, 14, 2590.
(13) Kirai, N.; Yamamoto, Y. Eur. J. Org. Chem. 2009, 1864.
(14) Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.;
Sharpless, K. B.; Fokin, V. V. J. Am. Chem. Soc. 2005, 127, 210.
(15) Harmand, L.; Lescure, M.-H.; Candelon, N.; Duttine, M.;
Lastécouères, D.; Vincent, J. M. Tetrahedron Lett. 2012, 53, 1417.
(16) Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Synlett 2012, 23,
2179.
mp 128–130 °C. IR: νmax = 3135, 2982, 1665, 1448, 1386 cm–1
.
1H NMR (400 MHz, CDCl3): δ = 7.74–7.72 (3 H, m), 7.66–7.61 (2
H, m), 7.55–7.48 (2 H, m), 7.25 (2 H, d, J = 7.6 Hz), 5.65 (2 H, s),
2.39 (3 H, s) ppm. 13C NMR (100 MHz, CDCl3): δ = 148.6, 138.2,
135.8, 131.5 (q, J = 32.2 Hz), 131.3, 129.8, 129.6, 127.4, 125.67
(q), 125.62, 124.7 (q, J = 3.7 Hz), 123.5 (q, J = 271.2 Hz), 122.3,
119.6, 119.2, 53.6, 21.4 ppm. HRMS: m/z calcd for C15H24N3F3Na
[M + Na]: 340.1032; found: 340.1040.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2016, 27, 51–56