ORGANIC
LETTERS
2011
Vol. 13, No. 7
1690–1693
Pd-Catalyzed r-Arylation of Nitriles and
Esters and γ-Arylation of Unsaturated
Nitriles with TMPZnCl LiCl
†
3
†
†
ꢀ
Stephanie Duez, Sebastian Bernhardt, Johannes Heppekausen,
Fraser F. Fleming,*,‡ and Paul Knochel*,†
€
Department Chemie, Ludwig-Maximilians-Universitat, Butenandtstrasse 5-13, 81377,
Mu€nchen, Germany, and Department of Chemistry and Biochemistry, Duquesne
University, 600 Forbes Avenue, Mellon Hall, Pittsburgh, Pennsylvania 15282,
United States
paul.knochel@cup.uni-muenchen.de; flemingf@duq.edu
Received January 21, 2011
ABSTRACT
Using TMPZnCl LiCl as a kinetically highly active base, nitriles and esters undergo a Pd-catalyzed R-arylation under mild conditions. Remarkably,
3
in the case of R,β- or β,γ-unsaturated nitriles, a regioselective γ-arylation or a γ-alkenylation is observed.
The Pd-catalyzed arylation of carbonyl derivatives and
related functional groups has significantly extended the
scope of enolate chemistry.1 Several bases have been used
to generate R-metalated nitriles and carbonyl derivatives.
These metal enolates produce, after reductive elimination
of an intermediate arylpalladium(II), various R-arylated
carbonyl compounds.2-5 Hagadorn has reported the use
of TMP2Zn to deprotonate amides and esters. He
†
€
Ludwig-Maximilians-Universitat.
‡ Duquesne University.
(1) (a) Johansson, C.; Colacot, T. Angew. Chem., Int. Ed. 2010, 49,
676. (b) Lloyd-Jones, G. C. Angew. Chem., Int. Ed. 2002, 41, 953.
(c) Bellina, F.; Rossi, R. Chem. Rev. 2009, 110, 1082.
(2) Mulvey, R.; Mongin, F.; Uchiyama, M.; Kondo, Y. Angew.
Chem., Int. Ed. 2007, 46, 3802.
(5) For examples with metalated nitriles, see: (a) Culkin, D. A.;
Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 9330. (b) You, J.; Verkade,
J. G. J. Org. Chem. 2003, 68, 8003. (c) Wu, L.; Hartwig, J. F. J. Am.
Chem. Soc. 2005, 127, 15824. (d) You, J.; Verkade, J. G. Angew. Chem.,
Int. Ed. 2003, 42, 5051.
(3) For examples with ketone, malonate, and amide enolates, see:
(a) Grasa, G. A.; Colacot, T. J. Org. Lett. 2007, 9, 5489. (b) Colacot, T. J.
Org. Lett. 2004, 6, 3731. (c) Ackermann, L.; Born, R. Angew. Chem., Int.
Ed. 2005, 44, 2444. (d) Ackermann, L.; Spatz, J. H.; Gschrei, C. J.; Born,
R.; Althammer, A. Angew. Chem., Int. Ed. 2006, 45, 7627. (e) Sakamoto,
T.; Katoh, E.; Kondo, Y.; Yamanaka, H. Chem. Pharm. Bull. 1998, 36,
1664. (f) Cristau, H. J.; Vogel, R.; Taillefer, M.; Gradas, A. Tetrahedron
Lett. 2000, 41, 8457. (g) De Filippis, A.; Pardo, D. G.; Cossy, J.
Tetrahedron 2004, 60, 9757. (h) Su, W.; Raders, S.; Verkade, J. G.; Liao,
X.; Hartwig, J. F. Angew. Chem., Int. Ed. 2006, 45, 5852. (i) Hama, T.;
Culkin, D. A.; Hartwig, J. F. J. Am. Chem. Soc. 2006, 128, 4976.
(4) For examples with ester enolates, see: (a) Bentz, E.; Moloney,
M. G.; Westaway, S. M. Tetrahedron Lett. 2004, 45, 7395. (b) Culkin,
D. A.; Hartwig, J. F. Acc. Chem. Res. 2003, 36, 234. (c) Hama, T.;
Hartwig, J. F. Org. Lett. 2008, 10, 1549. (d) Hama, T.; Hartwig, J. F.
Org. Lett. 2008, 10, 1545. (e) Hama, T.; Liu, X.; Culkin, D. A.; Hartwig,
J. F. J. Am. Chem. Soc. 2003, 125, 11176. (f) Jorgensen, M.; Lee, S.; Liu,
X.; Wolkowski, J. P.; Hartwig, J. F. J. Am. Chem. Soc. 2002, 124, 12557.
(g) Moradi, W. A.; Buchwald, S. L. J. Am. Chem. Soc. 2001, 123, 7996.
(h) Biscoe, M. R.; Buchwald, S. L. Org. Lett. 2009, 11, 1773. (i) Liu, X.;
Hartwig, J. F. J. Am. Chem. Soc. 2004, 126, 5182.
(6) (a) Hlavinka, M. L.; Hagadorn, J. R. Tetrahedron Lett. 2006, 47,
5049. (b) Hlavinka, M. L.; Hagadorn, J. R. Organometallics 2007, 26,
4105.
(7) Huang, D.; Hartwig, J. F. Angew. Chem., Int. Ed. 2010, 49, 5757.
ꢀ
(8) Renaudat, A.; Jean-Gerard, L.; Jazzar, R.; Kefalidis, C. E.; Clot,
E.; Baudoin, O. Angew. Chem., Int. Ed. 2010, 49, 7261.
(9) (a) Krasovskiy, A.; Krasovskaya, V.; Knochel, P. Angew. Chem.,
Int. Ed. 2006, 45, 2958. (b) Wunderlich, S.; Knochel, P. Angew. Chem.,
Int. Ed. 2007, 46, 7685. (c) Wunderlich, S.; Knochel, P. Org. Lett. 2008,
10, 4705. (d) Wunderlich, S.; Knochel, P. Chem. Commun. 2008, 6387.
(e) Mosrin, M.; Knochel, P. Org. Lett. 2009, 11, 1837. (f) Mosrin, M.;
Monzon, G.; Bresser, T.; Knochel, P. Chem. Commun. 2009, 5615.
(g) Rohbogner, C. J.; Wirth, S.; Knochel, P. Org. Lett. 2010, 12, 1984.
(h) Bresser, T.; Mosrin, M.; Monzon, G.; Knochel, P. J. Org. Chem.
2010, 75, 4686. (i) Wunderlich, S.; Knochel, P. Angew. Chem., Int. Ed.
2009, 48, 1501. (j) Wunderlich, S.; Kienle, M.; Knochel, P. Angew.
Chem., Int. Ed. 2009, 48, 7256. (k) Wunderlich, S.; Knochel, P. Chem.;
Eur. J. 2010, 16, 3304. (l) Wunderlich, S.; Knochel, P. Angew. Chem., Int.
Ed. 2009, 48, 9717. (m) Jeganmohan, M.; Knochel, P. Angew. Chem., Int.
Ed. 2010, 49, 8520.
r
10.1021/ol200194y
Published on Web 03/02/2011
2011 American Chemical Society